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Abstract

Covariance matrices provide compact, informative fea-

ture descriptors for use in several computer vision applica-

tions, such as people-appearance tracking, diffusion-tensor

imaging, activity recognition, among others. A key task in

many of these applications is to compare different covari-

ance matrices using a (dis)similarity function. A natural

choice here is the Riemannian metric corresponding to the

manifold inhabited by covariance matrices. But compu-

tations involving this metric are expensive, especially for

large matrices and even more so, in gradient-based algo-

rithms. To alleviate these difficulties, we advocate a novel

dissimilarity measure for covariance matrices: the Jensen-

Bregman LogDet Divergence. This divergence enjoys sev-

eral useful theoretical properties, but its greatest bene-

fits are: (i) lower computational costs (compared to stan-

dard approaches); and (ii) amenability for use in nearest-

neighbor retrieval. We show numerous experiments to sub-

stantiate these claims.

1. Introduction

An ever increasing number of computer vision and ma-

chine learning tasks depend on structured data where in-

stead of vectors, one uses richer representations of data such

as graphs, strings, or matrices. The focus of this paper is

on a particular class of such structured data, namely the

positive-definite matrices. These matrices arise naturally as

covariance matrices and because they offer compact, infor-

mative, and empirically beneficial feature descriptors, they

are by now popular in a variety of applications. Some recent

applications are mentioned below.

In multi-camera tracking [12,25] covariance matrices de-

rived from appearance silhouettes are known to be robust to

noise as well as to affine transformations, to illumination

changes, and to variations in the camera parameters. In [26]

it was shown how covariance matrices can be computed in

real-time using integral images, thus making them an ideal

platform for video surveillance applications. In the medi-

cal arena Diffusion Tensor Imaging (DTI) is an established

technique that depends on 3 × 3 positive-definite matrices

which are used to track the diffusion of water molecules

in the human brain, with applications such as diagnosis

of neuro-psychiatric illnesses [1, 34]. Further, it has also

been shown in computational anatomy that positive-definite

deformation tensors generated from Magnetic Resonance

Imaging (MRI) can better model changes in the brain struc-

tures [17]. Covariances computed from a bank of Gabor fil-

ters are used for robust face recognition in [27], while SIFT

based covariances are proposed for emotion recognition in

[33]. Other recent applications include covariances of opti-

cal flow for human action recognition [32], and covariances

from acoustic features for speech recognition [31].

However, these successful applications suffer from a

common drawback: whenever distance or similarity com-

putations with covariances are required, the corresponding

algorithms tend to be very slow. This slowness arises from

the fact that covariances do not conform to Euclidean geom-

etry, but rather form a Riemannian manifold, which makes

defining similarity measures between covariance matrices

non-trivial. But the choice of similarity measure is crucial,

especially for a fundamental task such as the Nearest Neigh-

bor (NN) retrieval which forms the building block for many

other applications. For example, for tracking the appear-

ance of people in video surveillance, the number of database

points can lie in the millions, and without efficient similar-

ity computation, NN retrieval and the subsequent tracking

are severely disadvantaged.

Driven by these concerns, we take a closer look at sim-

ilarity computation for covariance matrices, for which we

introduce the Jensen-Bregman LogDet (JBLD) divergence.

We discuss some theoretical properties of JBLD and then

apply it to the task of rapid NN retrieval on several image

databases. Experiments against state-of-the-art techniques

show the advantages afforded by JBLD.

To put our work into perspective, let us recall some
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standard similarity measures for covariance matrices. The

simplest but naive approach is to view dxd covariance

matrices as vectors in R
d(d+1)/2, whereby the standard

(dis)similarity measures of Euclidean space can be used

(e.g., ℓp-distance functions, etc.). But these vectorial mea-

sures ignore the manifold structure of covariance matri-

ces and can therefore be inferior choices. A more suit-

able choice is to consider the manifold structure of positive-

definite matrices and use the corresponding geodesic dis-

tance: the Affine Invariant Riemannian Metric (AIRM)

[5, 28] defined for X , Y in Sd
++, the set of d × d positive-

definite matrices, by:

DR(X,Y ) := ‖log(X−1/2Y X−1/2)‖F, (1)

where log(·) is the matrix logarithm. This metric enjoys

several useful theoretical properties [5], and is perhaps the

most widely used similarity measure for covariance matri-

ces. But it can be unattractive as it requires eigenvalue com-

putations or sometimes even matrix logarithms, which for

larger matrices causes significant slowdowns.

Amongst the many measures that have been proposed to

replace AIRM, a closely related one is the Log-Euclidean

Riemannian Metric (LERM) [2]

DLE(X,Y ) := ‖log(X) − log(Y )‖F, (2)

which uses the logarithmic map of covariance matrices to

turn them into symmetric matrices which can then be han-

dled as objects in ordinary Euclidean space. Applications

exist in visual tracking [18] and stereo matching [14]. How-

ever, using this metric requires pre-processing the dataset

by computing matrix logarithms, which can dramatically

increase the computational costs. Yet another alternative

is the symmetrized KL-Divergence Measure (KLDM) for

positive-definite matrices [20], though for our application

its accuracy on NN is poor. Other similarity measures on

covariance matrices may be found in [11].

In contrast to AIRM and LERM the similarity measure

that we propose is much faster to compute, as it depends

only on the determinant of the input matrices, and thus no

eigenvalue computations are required. Moreover, as we will

later see, it turns out to be empirically also very effective.

These gains come at a price: our measure is not a metric.

But this limitation is not that severe because we can still ex-

ploit convexity to build a fast NN retrieval procedure based

on our similarity measure.

We note that NN retrieval for covariance matrices itself is

still an emerging area, so literature on it is scarce. In [30], an

attempt is made to adapt NN techniques from vector spaces

to non-Euclidean spaces, while [9] proposes an extension

of the spectral hashing techniques to covariance matrices.

However, both these techniques are based on a Euclidean

embedding of the Riemannian manifold through the tangent

spaces, and then using LERM as an approximation to the

true similarity.

2. Jensen-Bregman LogDet Divergence

We first recall some basic definitions and then present

our new similarity measure: the Jensen-Bregman LogDet

Divergence (JBLD). We remark that although this measure

seems natural and simple, to our knowledge it has not been

formally discussed in detail before. We alert the reader that

JBLD should not be confused with its asymmetric cousin:

the so-called LogDet divergence [15].

At the core of our discussion lies the Bregman Diver-

gence dφ : S × relint(S) → [0,∞), which is defined as

dφ(x, y) := φ(x) − φ(y) − 〈x − y,∇φ(y)〉 , (3)

where φ : S ⊆ R
d → R is a strictly convex function of

Legendre-type on int(domS) [4,6]. From (3) the following

properties of dφ(x, y) are apparent: strict convexity in x;

asymmetry; non-negativity; and definiteness (i.e., dφ = 0,

iff x = y). Bregman divergences enjoy a host of useful

properties [4,8], but often their lack of symmetry and some-

times their lack of triangle-inequality can prove to be hin-

drances. Consequently, there has been substantial interest in

considering symmetrized versions such as Jensen-Bregman

divergences [3, 22, 23], where assuming s = (x + y)/2,

Jφ(x, y) := 1
2

(

dφ(x, s) + dφ(s, y)
)

, (4)

or even variants that satisfy the triangle inequality [3, 10].

Both (3) and (4) can be naturally extended to matrix di-

vergences (over Hermitian matrices) by composing the con-

vex function φ with the eigenvalue map λ, and replacing the

inner-product in (3) by the trace. We focus on a particular

matrix divergence, namely the Jensen-Bregman LogDet Di-

vergence, which is defined for X , Y in Sd
++ by

Jℓd(X,Y ) := log

∣

∣

∣

∣

X + Y

2

∣

∣

∣

∣

− 1

2
log |XY |. (5)

where | · | denotes the determinant; this divergence is ob-

tained from the matrix version of (4) by using φ(X) =
− log |X| as the seed function. It is easy to see that

Jℓd is symmetric, nonnegative, and definite. More-

over, it is invariant under congruence transformations,

(Jℓd(AXAT , AY AT ) = Jℓd(X,Y ) for invertible A), and

under inversion (Jℓd(X,Y ) = Jℓd(X
−1, Y −1)).

Less trite is the connection to the Riemannian metric

which we summarize below in Theorem 1. This connec-

tion also lends additional support to using Jℓd as a proxy

for the AIRM D2
R (or

√
Jℓd as a proxy for DR).

Theorem 1 (Bounds). Let X , Y ∈ Sd
++. Then,

Jℓd(X,Y ) ≤ D2
R(X,Y ). (6)



Additionally, if 0 ≺ mI � X,Y � MI , then

D2
R(X,Y ) ≤ 2 log(M/m)(Jℓd(X,Y ) + γ), (7)

where γ = d log 2.

Proof. Let vi = λi(XY −1). Since X , Y ∈ Sd
++, the

eigenvalues vi are also positive, whereby we can write each

vi = eui for some ui ∈ R. Using this notation, the AIRM

may be rewritten as DR(X,Y ) = ‖u‖2, and the JBLD as

Jℓd(X,Y ) =
∑d

i=1
(log(1 + eui) − ui/2 − log 2), (8)

where the equation follows by observing that Jℓd(X,Y ) =
log |I + XY −1| − 1

2 log |XY −1| − log 2d.

To prove inequality (6) consider the function f(u) =
u2 − log(1 + eu) + u/2 + log 2. This function is convex

since its second derivative

f ′′(u) = 2 − eu

(1 + eu)2
,

is clearly nonnegative. Moreover, f attains its minimum at

u∗ = 0, as is immediately seen by solving the optimality

condition f ′(u) = 2u − eu/(1 + eu) + 1/2 = 0. Thus,

f(u) ≥ f(u∗) = 0 for all u ∈ R, which in turn implies that

∑d

i=1
f(ui) = D2

R(X,Y ) − Jℓd(X,Y ) ≥ 0. (9)

To prove the next inequality (7), first observe that

∑d

i=1
(log(1+eui)−ui/2−log 2) ≥

∑d

i=1
(|ui|/2−log 2),

which implies the bound

Jℓd(X,Y ) + d log 2 ≥ 1
2‖u‖1. (10)

Since uT u ≤ ‖u‖∞‖u‖1 (Hölder’s inequality), using (10)

we immediately obtain the bound

D2
R(X,Y ) = ‖u‖2

2 ≤ 2‖u‖∞(Jℓd + γ), (11)

where γ = d log 2. But mI � X,Y � MI implies that

‖u‖∞ ≤ log(M/m), which concludes the proof.

Computational Advantages. The greatest advantage of

this new measure against the Riemannian metric is its com-

putational speed: Jℓd requires only computation of deter-

minants, which can be done rapidly via 3 Cholesky factor-

izations (for X + Y , X and Y ), each at a cost of (1/3)d3

flops [13]. Computing DR on the other hand requires gener-

alized eigenvalues, which can be done for positive-definite

matrices in approximately 4d3 flops. Thus, in general Jℓd

is much faster (see also Table 1). The computational ad-

vantages of Jℓd are much more impressive when comparing

evaluation of gradients:

∇XD2
R(X,Y ) = X−1 log(XY −1),

∇XJℓd(X,Y ) = (X + Y )
−1 − 1

2X−1.

Table 2 shows that computing ∇Jℓd can be even more than

100 times faster than ∇DR. This speed proves critical for

NN retrieval, or more generally when using any algorithm

that depends on gradients of the similarity measure.

d DR Jℓd

5 .025 ± .012 .035 ± .007
10 .038 ± .005 .042 ± .009
20 .085 ± .006 .064 ± .009
40 .334 ± .332 .127 ± .012
80 1.23 ± .055 .393 ± .050

200 8.198 ± .129 2.223 ± .169
500 77.311 ± .568 22.186 ± 1.223

1000 492.743 ± 15.519 119.709 ± 1.416
Table 1. Average times (millisecs/trial) to compute function val-

ues; computed over 10,000 trials to reduce variance.

d ∇XD2

R(X, Y ) ∇XJℓd(X, Y )

5 0.798 ± .093 .036 ± .009
10 2.383 ± .209 .058 ± .021
20 7.493 ± .595 .110 ± .013
40 24.899 ± 1.126 .270 ± .047
80 99.486 ± 5.181 .921 ± .028

200 698.873 ± 39.602 8.767 ± 2.137
500 6377.742 ± 379.173 94.837 ± 1.195

1000 40443.059 ± 2827.048 622.289 ± 37.728
Table 2. Average times (millisecs/trial) to compute gradients; com-

puted over 1000 trials (except for the last two experiments, where

to save time only 100 trials were used) to reduce variance.

3. Fast Nearest Neighbor Retrieval for Jℓd

Now we turn to the key application that originally mo-

tivated us to investigate Jℓd: Nearest Neighbor (NN) Re-

trieval for covariance matrices. Here, we have a dataset

{S1, . . . , Sn} of d× d covariance matrices that we must or-

ganize into a data structure to facilitate rapid NN retrieval.

Typical NN data structures require the similarity measure

used for computing “nearness” to be a metric. Thus, Jℓd

raises a major complication since it (and even
√

Jℓd) fails

to satisfy the triangle inequality. Fortunately, this difficultly

can be tackled by adapting the framework of Bregman-Ball

Trees (BBT) [7]. But for an effective adaptation of the

BBT, we must efficiently perform two subtasks: (i) partition

the input data using clustering; and (ii) compute Jensen-

Bregman projections onto appropriate convex (Bregman-

Ball) sets for input query points. We discuss both subtasks

below.



3.1. K­Means with Jℓd

Suppose S1, . . . , Sn are the input covariance matrices

that we wish to partition into K clusters. A standard K-

means type approach proceeds by minimizing

min
C1,...,CK

∑K

k=1

∑

S∈Ck

J(Xk, S), (12)

where Xk represents the “centroid” of cluster Ck. To

solve (12) we alternate between cluster assignment and

centroid-computation. The latter is the only non-trivial step,

so we discuss it only and omit the rest for brevity.

It suffices to describe centroid computation for a single

cluster. Let C 6= ∅ be an arbitrary cluster—its centroid is

computed by solving

min
X

Θ(X) :=
∑

S∈C
Jℓd(X,S). (13)

If Problem (13) has a solution, say X∗, then it must satisfy

the first-order optimality conditions:

−2∇XΘ(X∗) = |C| (X∗)
−1−

∑

S∈C

(

X∗ + S

2

)−1

= 0,

where |C| denotes size of C. In other words, X∗ must satisfy

(X∗)
−1

=
1

|C|
∑

S∈C

(

X∗ + S

2

)−1

. (14)

Now we show that X∗ lies in a compact set, a fact that will

be very useful. To that end, we first recall two basic lemmas

(see e.g., [5] for proofs).

Lemma 2. The function f(X) = X−1 is matrix convex on

positive-definite matrices, i.e., if X,Y ≻ 0, then

f(tX + (1 − t)Y ) � tf(X) + (1 − t)f(Y ), t ∈ [0, 1].

Lemma 3. If X � Y ≻ 0. Then, Y −1 � X−1.

Applying Lemma 2 to Equation (14) we obtain

(X∗)
−1 � 1

|C|
∑

S∈C

(

(X∗)
−1

2
+

S−1

2

)

, (15)

while inverting (14) and then invoking Lemma 2 we get

X∗ � 1

|C|
∑

S∈C

(X∗ + S

2

)

. (16)

Simplifying (15) and (16), and using Lemma 3 we have

(

1
|C|

∑

S∈C
S−1

)−1 � X∗ �
(

1
|C|

∑

S∈C
S

)

. (17)

The bounds (17) imply that X∗ lives within a compact set;

moreover this set is convex. Thus, the effective domain of

Θ in (13) can be restricted to be this compact set, which

guarantees existence of a minimum [29].

Since Θ is strictly convex, this minimum is unique. In

light of this fact, one can use numerous convex optimiza-

tion procedures, the simplest of which includes Gradient-

Projection (GP). But taking cue from the literature on non-

linear matrix equations (e.g., [16]), we prefer iterating the

following nonlinear map

GY =
1

|C|
∑

S∈C

(

Y −1 + S

2

)−1

, (18)

using the iteration:

Yk+1 = GYk, k = 0, 1, . . . . (19)

If Y0 is chosen properly, then similar to (17) we can show

that each of the iterates Yk produced by satisfies

(

1
|C|

∑

S∈C
S

)−1 � Yk �
(

1
|C|

∑

S∈C
S−1

)

. (20)

Assuming Y0 is chosen to satisfy (20), we can further show

(inductively) Yk+1 � Yk. Thus, the sequence {Yk}k≥0 is

monotonic, and since it lies in a compact set, it must con-

verge to a unique limit point. This limit must be the mini-

mum point because it satisfies the optimality condition (14).

Thus, iteration (19) computes the centroid by solving (13).

3.2. NN Using Bregman Ball Trees

Bregman Ball Trees (BBT) were introduced in [7] as

an alternative to metric trees for enabling fast NN retrieval

when the underlying similarity measure is a Bregman diver-

gence. Even though JBLD is not a Bregman divergence, we

can still adapt the BBT framework, as shown below.

Building BBT. As suggested in [7], to build the ball tree,

we perform top-down bi-partitioning of the input space by

recursively applying the JBLD-K-Means algorithm (intro-

duced above). Each partition of the BBT is identified by

a centroid and the ball radius. For n data points, the to-

tal build time of the tree is O(n log n). To save time, we

stop partitioning a cluster when the number of points in it

goes below a certain threshold; this threshold is selected as

a balance between the computational time to do exhaustive

search on the cluster elements againsts doing k-means on it.

Querying using BBT. Given a query point q, one first

performs a greedy binary search for the NN along the most

proximal centroids at each level. Once a leaf partition is

reached, exhaustive search is used to localize to the candi-

date centroid Xc (see Fig. 1). Then one backtracks to check

if any of the sibling nodes (that were temporarily ignored

in the greedy search) contain a data point that is closer to q



Figure 1. Bregman projection: Point X is the projection of q onto

the ball with centroid C and radius R. The curve segments show

the geodesics connecting the points in the space of covariances.

than Xc. To this end, we solve the following optimization

problem on each of the sibling centroids C:

d(Xc, q) > min
X;d(X,C)=R

d(X, q) (21)

where X is called the projection of q onto the ball with cen-

troid C, radius R and d is some distance function. If (21)

is satisfied, then the sibling node should be explored, other-

wise it can be pruned. When d is a metric, (21) has a simple

solution utilizing the triangle inequality. If d happens to be

a Bregman divergence, then the segment connecting C and

q is a straight line and thus bisection can be used to compute

the projection point X [7].

This approach cannot be directly applied to our frame-

work because our choice is d = Jℓd, which is a sym-

metrized divergence, not a Bregman divergence. In [22,

24], this situation is investigated in detail; the bisection

line search being replaced by a dichotomic search on the

geodesic linking q and C to compute the unique projection.

To this end, we iteratively bisect the geodesic between q
and C using our efficient JBLD k-means algorithm until the

projection point falls on the ball of radius R. Algorithm 1

details the various steps involved in the process.

Algorithm 1 Projection Algorithm.

Require: C, R, q;

Initialize Ymin ⇐ C, Ymax ⇐ q;

repeat

X ⇐compute centroid of Ymin and Ymax using Eq. (19)

d ⇐ R − Jℓd(X, C);

if d > 0 then

Ymin ⇐ X

else {d ≤ 0}
Ymax ⇐ X

end if

until |d| is less than a threshold

return X

4. Experiments

We are now ready to describe our experimental setup and

results to substantiate the effectiveness of the new similarity

measure. We first discuss the performance metric on which

our experiments are based, later providing simulation re-

sults, followed by the results on three real-world datasets.

All algorithms were implemented in MATLAB and tested

on a machine with 3GHz CPU and 3GB RAM.

Accuracy: Since many of the datasets used in our exper-

iments do not have ground truth data available, the base-

lines for comparison were decided via a linear scan using

the AIRM metric as this metric is deemed the state-of-the-

art on covariance data. For NN experiments, we create a

database and a query set of q items. For each query item i,
k ground truth neighbors (Gk

i ) are found using linear scan,

followed by k nearest neighbors (Ak
i ) retrieved using the

respective algorithm. We define

Accuracy =
1

q

∑

i

|Gk
i ∩ Ak

i |
|Gk

i |
. (22)

Note that Accuracy is technically equivalent to both the

standard measures of precision and recall in our case.

4.1. Simulations

Clustering Performance: In this section, we evaluate

in a controlled setting a key component of our proposed

method: the JBLD K-means algorithm. To this end, we

created a base set of covariance matrices from a set of sim-

ulated feature vectors. Subsequently, noise of varying mean

was added to these feature vectors to obtain a set of noisy

covariances that formed a cluster. The base covariances

were used as queries while the noisy ones as the database.

A linear scan through the data using the Riemannian met-

ric to measure nearness defined the ground truth. Using this

setup, we evaluate three different timing scenarios: (i) as

database size increases; (ii) as matrix size increases; and

(iii) as the number of true clusters grow. Each experiment

varied only one of these three parameters. The results are

shown in Fig. 2, and as is evident, across all three timing

scenarios the clustering method based on the AIRM is sig-

nificantly outperformed by our algorithm.

4.2. Real Data Experiments

Tracking using Integral Images People appearance

tracking has been one of the most successful applications

using covariances. We chose to experiment with some of

the popular tracking scenarios: (i) face tracking under affine

transformations, (ii) face tracking under changes in pose,

and (iii) vehicle tracking. For (i) and (ii), the tracking

dataset described in [21] was used, while the vehicle track-

ing video was taken from the ViSOR repository1. The im-

ages from the video were resized to 244×320 for speed and

integral images computed on each frame. An input tracking

1http://www.openvisor.org
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Figure 2. Clustering time for (a) increasing dataset size, (b) increasing matrix size, (c) increasing number true clusters.
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Figure 3. Tracking using JBLD on covariances computed from integral images: (a) affine face tracking, (b) tracking face with pose

variations, and (c) vehicle tracking. The red rectangle in the first image in each row shows the object being tracked. The yellow rectangles

in the subsequent images are the nearest objects returned by JBLD.

region was given at the beginning of the video, which is

then tracked in subsequent images using the integral trans-

form and covariances thus computed. We used the color and

the first order gradient features for the covariances. Fig. 3

shows a few qualitative results of this experiment. We com-

pared the window of tracking for both AIRM and JBLD,

and found that they always fall at the same location in the

video.

4.3. NN Performance via Exhaustive Search

Next, we evaluate the performance of the different met-

rics against the accuracy of search and speed of retrieval

on real data. This is important, as most of the real-time

applications (e.g., tracking) cannot afford to spend time in

building a metric tree. We use three different covariance

datasets: (i) Brodatz textures; (ii) People appearance track-

ing2; and (iii) FERET face3. See Fig. 4 for sample images

from each dataset. A summary of these datasets follows.

Brodatz Texture: This dataset has approximately 160 true

texture images of size 512×512. To create the covariances,

we followed the suggestions in [26] and used the first and

second order gradient based features. The final dataset con-

tained 5K covariances.

People Appearances: For this database we used videos of

people appearances tracked using multiple cameras. The

background was first learned using a mixture of Gaussians,

then the silhouettes of people were extracted. The first and

second order image gradients along with the color informa-

tion were used to obtain approximately 10K covariances of

size 8 × 8.

FERET Faces: This dataset consisted of approximately 4K

2http://cvlab.epfl.ch/research/body/surv/#data
3http://www.itl.nist.gov/iad/humanid/feret/



face images. We first applied a face detection algorithm4

to extract the frontal features of the face, and then applied

Gabor filters to these features based on the suggestions in

[19]. From the resulting feature vectors, covariances of size

40 × 40 were then generated.

Figure 4. Sample images from the appearance tracking dataset

(top), FERET face appearances (middle), and Brodatz texture

database (bottom).

We divided each of the datasets into database and query

sets, and then computed accuracy against either the avail-

able ground truth or the baseline computed using the Rie-

mannian metric. The results are shown in Table 3: clearly

the JBLD measure outperforms all the other metrics in

speed, without compromising accuracy.

Dataset( size) AIRM JBLD LERM KLDM

Texture (4428)

Avg. Accuracy(%) 88.0 88.0 75.2 79.6

Avg. Time (s) 120.88 110.25 61.54 263.02

Appearance (8596)

Avg. Accuracy(%) – 100 83.3 70.0

Avg. Time (s) 303.43 274.2 150.17 592.26

Face (3010)

Avg. Accuracy(%) 60.0 60.5 43.5 56.5

Avg. Time (s) 836.47 356.68 106.55 830.15

Table 3. Performance of the similarity measure on different

datasets for one NN query using exhaustive search averaged over

1K queries. Note that for the appearance dataset, we used AIRM

as the baseline (and thus the accuracy not shown). Avg. time is in

seconds.

4.4. NN Performance Using BBT

Building the Tree: The time required to build the NN

data structure plays a critical role in the deployment of the

4http://staff.science.uva.nl/ zivkovic/download.html

measure. Thus, in Table 4 we show a comparison of the

initialization time for the BBT (against a metric tree using

AIRM) as the database size grows. Even though the build

time seems quite similar for small datasets, AIRM takes

dramatically more time than JBLD with increasing size.

The reason being the Karcher mean algorithm [25] used for

the computation of the cluster centroids under the AIRM

metric which requires the gradient computations, that we

know is computationally inferior to JBLD. The iterations

for JBLD K-means were found to converge under a thresh-

old of 1e–3 in 8–12 iterations.

Dataset Size AIRM(s) JBLD(s)

3K 16.52 15.66

4K 45.86 22.49

5K 321.5 30.56

Table 4. Comparison of initialization times (seconds) for the BBT.

NN Retrieval: Finally, we compare accuracy and the

speed of retrieval of JBLD against AIRM. Table 5 shows

the results. As is evident, without any noticeable drop in

the accuracy, JBLD achieves superior performance in NN

retrieval. We assume the AIRM to be the baseline, as we

already know from Table 3 that they have the same base

accuracy.

Dataset Metric AIRM JBLD

Texture Avg. Accuracy(%) – 99.6
Avg. Time (ms) 203.27 10.02

Appearance Avg. Accuracy(%) – 99.0
Avg. Time (ms) 383.06 11.54

Face Avg. Accuracy(%) – 100

Avg. Time (ms) 620.20 114.11

Table 5. Average performance per query on NN using BBT and

AIRM as baseline. The NN accuracy for LERM was found to

be less than 5% and thus not shown. Refer Table 3 for accuracy

comparison with other methods.

5. Conclusion

We introduced a novel similarity measure based on the

Jensen-Bregman LogDet Divergence defined over the set

of positive-definite (i.e., covariance) matrices. The mea-

sure has several desirable theoretical properties including

inequalities relating it to the Riemannian metric for covari-

ances. More importantly, it was shown to outperform the

Riemannian metric in speed, without any drop in applica-

tion performance. Although this similarity measure does

not satisfy the triangle inequality, we showed that this prob-

lem can be easily circumvented using the convexity of the

measure by invoking the Bregman-ball tree framework. Ex-

periments substantiated the effectiveness of the measure.

Going forward, we would like to investigate the applicabil-

ity of this similarity measure in classification and regression

settings, and to study its theoretical properties further.
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