Outline

- Convex analysis, optimality
- First-order methods
- Proximal methods, operator splitting
- Stochastic optimization, incremental methods
- Nonconvex models, algorithms
- Geometric optimization
Nonconvex problems

- SVD, PCA
- Other eigenvalue problems
- Matrix & tensor factorization, clustering
- Deep neural networks
- Topic models, Bayesian nonparametrics
- Probabilistic mixture models
- Combinatorial optimization
- Linear, nonlinear mixed integer programming
- Optimization on manifolds
- Optimization in metric spaces
- ...
Introduction

Nonlinear program

\[
\begin{align*}
\min & \quad f(x) \\
\text{s.t.} & \quad g_i(x) \leq 0, \quad i = 1, \ldots, m.
\end{align*}
\]
Introduction

Nonlinear program

\[\begin{align*}
\text{min} & \quad f(x) \\
\text{s.t.} & \quad g_i(x) \leq 0, \quad i = 1, \ldots, m.
\end{align*} \]

Claim: If \(f \) and \(g_i \) are convex, then under some “constraint qualifications” (e.g., there exists an \(x \) for which \(g_i(x) < 0 \) holds), \textit{necessary and sufficient} conditions characterizing global optimality are known (e.g., \textit{Karush-Kuhn-Tucker}).
Introduction

Nonlinear program

\[
\begin{align*}
\text{min} & \quad f(x) \\
\text{s.t.} & \quad g_i(x) \leq 0, \quad i = 1, \ldots, m.
\end{align*}
\]

\[0 \in \partial f(x^*)\] necessary and sufficient \((m = 0, \text{cvx})\)
Introduction

Nonlinear program

\[
\begin{align*}
\min & \quad f(x) \\
\text{s.t.} & \quad g_i(x) \leq 0, \quad i = 1, \ldots, m.
\end{align*}
\]

Nonconvex: Under some constraint qualification, *necessary* conditions known. But *no known* simple conditions that are both necessary and sufficient.
Introduction

Nonlinear program

\[
\begin{align*}
\min & \quad f(x) \\
\text{s.t.} & \quad g_i(x) \leq 0, \quad i = 1, \ldots, m.
\end{align*}
\]

♠ Is alleged solution a local min? – often skipped question

♠ **Myth:** Algorithms converge to global minima for convex local minima for nonconvex
NP-Hardness of nonconvex opt.

Recall **subset-sum** – well-known NP-Complete problem

Given a set of integers \(\{a_1, \ldots, a_n\} \), is there a non-empty subset whose sum is zero?

Optimization version

\[
\begin{align*}
\min & \quad \sum_i a_i z_i \\
\text{s.t.} & \quad 0 \leq z_i \leq 1, \quad i = 1, \ldots, n
\end{align*}
\]

Subset-sum has feasible solution, iff global min objval is zero. But subset-sum is NP-Complete; so above problem also NPC.

Suvrit Sra (MIT) Convex, nonconvex, and geometric optim.
NP-Hardness of nonconvex opt.

Recall **subset-sum** – well-known NP-Complete problem

Given a set of integers \(\{a_1, \ldots, a_n\} \), is there a non-empty subset whose sum is zero?

In other words, is there a solution \(z \) to

\[
\sum_i a_i z_i = 0 \quad z_i \in \{0, 1\} \quad \text{for } i = 1, \ldots, n.
\]
NP-Hardness of nonconvex opt.

Recall **subset-sum** – well-known NP-Complete problem

Given a set of integers \(\{ a_1, \ldots, a_n \} \), is there a non-empty subset whose sum is zero?

In other words, is there a solution \(z \) to

\[
\sum_i a_i z_i = 0 \quad z_i \in \{0, 1\} \quad \text{for } i = 1, \ldots, n.
\]

Optimization version

\[
\min \left(\sum_i a_i z_i \right)^2 + \sum_i z_i(1 - z_i)
\]

s.t. \(0 \leq z_i \leq 1 \), \(i = 1, \ldots, n \).

Subset-sum has feasible solution, **iff** global min objval is zero. But subset-sum is NP-Complete; so above problem also NPC.
Nonconvex quadratic optimization

Let A be a symmetric matrix (not necessarily positive definite).

$$\min \quad x^T A x \quad \text{s.t.} \quad x \geq 0.$$

Is $x = 0$ not a local minimum?
Nonconvex quadratic optimization

Let A be a symmetric matrix (not necessarily positive definite).

$$\min \quad x^T Ax \quad \text{s.t.} \quad x \geq 0.$$

Is $x = 0$ not a local minimum?

This is NP-Hard!

Generally, even for unconstrained nonconvex problems testing local minimality or objective boundedness (below) are NP-Hard.
In “convex” words

Copositive cone

Def. Let $CP_n := \{ A \in S^{n \times n} \mid x^T A x \geq 0, \ \forall x \geq 0 \}$.

Exercise: Verify that CP_n is a convex cone.

- Testing membership in CP_n is co-NP complete.
 (Deciding whether given matrix is not copositive is NP-complete.)
- Copositive cone programming: NP-Hard

Exercise: Verify that the following matrix is copositive:

$$A := \begin{bmatrix}
1 & -1 & 1 & 1 & -1 \\
-1 & 1 & -1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 \\
1 & 1 & -1 & 1 & -1 \\
-1 & 1 & 1 & -1 & 1
\end{bmatrix}.$$
Let A be a symmetric matrix; b some vector.

$$\min \quad x^T Ax + 2b^T x, \quad \text{s.t. } x^T x \leq 1.$$
Let A be a symmetric matrix; b some vector.

$$\min x^T Ax + 2b^T x, \quad \text{s.t. } x^T x \leq 1.$$

When $A \not\succeq 0$, above problem is nonconvex. Also known as, trust-region subproblem (TRS).
Solvable nonconvex QP

Let A be a symmetric matrix; b some vector.

$$\min \ x^T Ax + 2b^T x, \ \text{s.t.} \ x^T x \leq 1.$$

When $A \not\succeq 0$, above problem is nonconvex.

Also known as, *trust-region subproblem* (TRS).

Lagrangian

$$L(x, \theta) = x^T Ax + 2b^T x + \theta(x^T x - 1)$$

$$L(x, \theta) = x^T (A + \theta I)x + 2b^T x - \theta.$$
Let A be a symmetric matrix; b some vector.

$$
\min x^T Ax + 2b^T x, \quad \text{s.t. } x^T x \leq 1.
$$

When $A \not\succeq 0$, above problem is nonconvex.

Also known as, trust-region subproblem (TRS).

Lagrangian

$$
L(x, \theta) = x^T Ax + 2b^T x + \theta(x^T x - 1)
$$

$$
L(x, \theta) = x^T (A + \theta I)x + 2b^T x - \theta.
$$

If $b \notin \mathcal{R}(A + \theta I)$, then we can choose an $x \in \mathcal{N}(A + \theta I)$ that drives $\inf_x L(x, \theta)$ to $-\infty$.
Let A be a symmetric matrix; b some vector.

$$
\min \quad x^T Ax + 2b^T x, \quad \text{s.t. } x^T x \leq 1.
$$

When $A \not\succeq 0$, above problem is nonconvex.

Also known as, trust-region subproblem (TRS).

Lagrangian

$$
L(x, \theta) = x^T Ax + 2b^T x + \theta(x^T x - 1)
$$

$$
L(x, \theta) = x^T (A + \theta I)x + 2b^T x - \theta.
$$

If $b \notin \mathcal{R}(A + \theta I)$, then we can choose an $x \in \mathcal{N}(A + \theta I)$ that drives $\inf_x L(x, \theta)$ to $-\infty$.

$$
g(\theta) := \begin{cases}
-b^T (A + \theta I)^{\dagger} b - \theta & A + \theta I \succeq 0, \ b \in \mathcal{R}(A + \theta I) \\
-\infty & \text{otherwise}
\end{cases}
$$
A nice nonconvex problem

Dual optimization problem

\[
\begin{align*}
\max & \quad -b^T (A + \theta I)^\dagger b - \theta \\
\text{s.t.} & \quad A + \theta I \succeq 0, \ b \in \mathcal{R}(A + \theta I).
\end{align*}
\]
A nice nonconvex problem

Dual optimization problem

\[
\begin{align*}
\text{max} & \quad - b^T (A + \theta I)^\dagger b - \theta \\
\text{s.t.} & \quad A + \theta I \succeq 0, \ b \in \mathcal{R}(A + \theta I).
\end{align*}
\]

Consider eigendecomposition of \(A = U \Lambda U^T \). Then,

\[
(A + \theta I)^\dagger = U \text{Diag}(1 + \lambda_i)^{-1} U^T.
\]
A nice nonconvex problem

Dual optimization problem

\[
\begin{align*}
\max & \quad -b^T(A + \theta I)^\dagger b - \theta \\
\text{s.t.} & \quad A + \theta I \succeq 0, \ b \in \mathcal{R}(A + \theta I).
\end{align*}
\]

Consider eigendecomposition of \(A = U\Lambda U^T \). Then,

\[
(A + \theta I)^\dagger = U\text{Diag}(1 + \lambda_i)^{-1}U^T.
\]

Thus, above problem can be written as

\[
\begin{align*}
\max & \quad -\sum_{i=1}^n \frac{(u_i^T b)^2}{\lambda_i + \theta} - \theta \\
\text{s.t.} & \quad \theta \geq -\lambda_{\min}(A).
\end{align*}
\]

😊 Convex optimization problem!
Matrix Factorization
The SVD

Singular Value Decomposition

Theorem SVD (Thm. 2.5.2 [GoLo96]). Let $A \in \mathbb{R}^{m \times n}$. There exist orthogonal matrices U and V

$$U^T AV = \text{Diag}(\sigma_1, \ldots, \sigma_p), \quad p = \min(m, n),$$

where $\sigma_1 \geq \sigma_2 \geq \cdots \geq 0$.

Suvrit Sra (MIT) Convex, nonconvex, and geometric optim.
Theorem Let A have the SVD $U\Sigma V^T$. If $k < \text{rank}(A)$ and

$$A_k = \sum_{i=1}^{k} \sigma_i u_i v_i^T,$$

then,

$$\|A - A_k\|_2 \leq \|A - B\|_2, \text{ s.t. } \text{rank}(B) \leq k$$

$$\|A - A_k\|_F \leq \|A - B\|_F, \text{ s.t. } \text{rank}(B) \leq k.$$
Theorem Let A have the SVD $U \Sigma V^T$. If $k < \text{rank}(A)$ and

$$A_k = \sum_{i=1}^{k} \sigma_i u_i v_i^T,$$

then,

$$\|A - A_k\|_2 \leq \|A - B\|_2, \text{ s.t. } \text{rank}(B) \leq k$$

$$\|A - A_k\|_F \leq \|A - B\|_F, \text{ s.t. } \text{rank}(B) \leq k.$$

SVD gives **globally optimal** solution to the nonconvex problem

$$\min \|X - A\|_F, \quad \text{s.t. } \text{rank}(X) \leq k.$$
Truncated SVD – proof

Prove: TSVD yields “best” rank-k approximation to matrix A

Proof.

1. First verify that $\|A - A_k\|_2 = \sigma_{k+1}$
2. Let B be any rank-k matrix
3. Prove that $\|A - B\|_2 \geq \sigma_{k+1}$

Since $\text{rank}(B) = k$, there are $n - k$ vectors that span the null-space $\mathcal{N}(B)$. But $\mathcal{N}(B) \cap V_{k+1} \neq \{0\}$ (??), so we can pick a unit-norm vector $z \in \mathcal{N}(B) \cap V_{k+1}$. Now $Bz = 0$, so

$$\|A - B\|_2^2 \geq \|(A - B)z\|_2^2 = \|Az\|_2^2 = \sum_{i=1}^{k+1} \sigma_i^2 (v_i^T z)^2 \geq \sigma_{k+1}^2$$

We used: $\|Az\|_2 \leq \|A\|_2 \|z\|_2$
Nonnegative matrix factorization

Say we want a \textit{low-rank approximation} \(A \approx BC \)
Nonnegative matrix factorization

Say we want a *low-rank approximation* $A \approx BC$

- SVD yields dense B and C
- B and C contain negative entries, even if $A \geq 0$
- SVD factors may not be that easy to interpret
Nonnegative matrix factorization

Say we want a *low-rank approximation* \(A \approx BC \)

- SVD yields dense \(B \) and \(C \)
- \(B \) and \(C \) contain negative entries, even if \(A \geq 0 \)
- SVD factors may not be that easy to interpret

\[
\text{NMF imposes } B \geq 0, \ C \geq 0
\]
Algorithms

\[A \approx BC \quad \text{s.t.} \quad B, C \geq 0 \]

Least-squares NMF

\[\min \quad \frac{1}{2} \| A - BC \|_F^2 \quad \text{s.t.} \quad B, C \geq 0. \]

KL-Divergence NMF

\[\min \quad \sum_{ij} a_{ij} \log \frac{(BC)_{ij}}{a_{ij}} - a_{ij} + (BC)_{ij} \quad \text{s.t.} \quad B, C \geq 0. \]
Algorithms

\[A \approx BC \quad \text{s.t. } B, C \geq 0 \]

Least-squares NMF

\[
\begin{align*}
\min & \quad \frac{1}{2} \| A - BC \|_F^2 \\
\text{s.t.} & \quad B, C \geq 0.
\end{align*}
\]

KL-Divergence NMF

\[
\begin{align*}
\min & \quad \sum_{ij} a_{ij} \log \frac{(BC)_{ij}}{a_{ij}} - a_{ij} + (BC)_{ij} \\
\text{s.t.} & \quad B, C \geq 0.
\end{align*}
\]

♠ NP-Hard (Vavasis 2007) – no surprise

♠ Recently, Arora et al. showed that if the matrix \(A \) has a special “separable” structure, then actually globally optimal NMF is approximately solvable. More recent progress too!

♣ We look at only basic methods in this lecture
NMF Algorithms

- Hack: Compute TSVD; “zero-out” negative entries
- Alternating minimization (AM)
- Majorize-Minimize (MM)
- Global optimization (not covered)
- Incremental gradient algorithms
Alternating Descent

\[
\min \quad F(B, C)
\]

Alternating Descent

1. Initialize \(B^0, k \leftarrow 0 \)
2. Compute \(C^{k+1} \) s.t. \(F(A, B^k C^{k+1}) \leq F(A, B^k C^k) \)
3. Compute \(B^{k+1} \) s.t. \(F(A, B^{k+1} C^{k+1}) \leq F(A, B^k C^{k+1}) \)
4. \(k \leftarrow k + 1 \), and repeat until stopping criteria met.
Alternating Minimization

Alternating Least Squares

\[C = \arg\min_C \| A - B^k C \|^2_F; \]
Alternating Minimization

Alternating Least Squares

\[C = \arg\min_C \| A - B^k C \|^2_F; \quad C^{k+1} \leftarrow \max(0, C) \]
Alternating Minimization

Alternating Least Squares

\[C = \arg\min_C \| A - B^k C \|_F^2; \quad C^{k+1} \leftarrow \max(0, C) \]

\[B = \arg\min_B \| A - BC^{k+1} \|_F^2; \quad B^{k+1} \leftarrow \max(0, B) \]
Alternating Minimization

Alternating Least Squares

\[C = \arg\min_C \| A - B^k C \|_F^2; \quad C^{k+1} \leftarrow \max(0, C) \]

\[B = \arg\min_B \| A - BC^{k+1} \|_F^2; \quad B^{k+1} \leftarrow \max(0, B) \]

ALS is fast, simple, often effective, but ...
Alternating Minimization

Alternating Least Squares

\[C = \arg\min_C \| A - B^k C \|_F^2; \quad C^{k+1} \leftarrow \max(0, C) \]

\[B = \arg\min_B \| A - B C^{k+1} \|_F^2; \quad B^{k+1} \leftarrow \max(0, B) \]

ALS is fast, simple, often effective, but ...

\[\| A - B^{k+1} C^{k+1} \|_F^2 \leq \| A - B^k C^{k+1} \|_F^2 \leq \| A - B^k C^k \|_F^2 \]

descent need not hold

Suvrit Sra (MIT) Convex, nonconvex, and geometric optim.
Alternating Minimization: correctly

Use alternating **nonnegative least-squares**

\[
C^{k+1} = \arg\min_C \|A - B^k C\|_F^2 \quad \text{s.t.} \quad C \geq 0
\]

\[
B^{k+1} = \arg\min_B \|A - BC^{k+1}\|_F^2 \quad \text{s.t.} \quad B \geq 0
\]

Advantages: Guaranteed descent. Theory of block-coordinate descent guarantees convergence to *stationary point*.

Disadvantages: more complex; slower than ALS
Convergence

AM / two block CD

\[\min F(x) = F(x_1, x_2) \quad x \in \mathcal{X}_1 \times \mathcal{X}_2. \]

Theorem (Grippo & Sciandrone (2000)). Let \(F \) be continuously differentiable, and the sets \(\mathcal{X}_1, \mathcal{X}_2 \) be closed and convex. Assume that the both BCD subproblems have solutions, and that the sequence \(\{x^k\} \) has limit points. Then, every limit point of \(\{x^k\} \) is stationary.

- No need of *unique solutions* to subproblems
- BCD for 2 blocks aka **Alternating Minimization**
Alternating Proximal Method

\[\min L(x, y) := F(x, y) + G(x) + H(y). \]

Assume: \(\nabla F \) Lipschitz cont. on bounded subsets of \(\mathbb{R}^m \times \mathbb{R}^n \)

\(G \): lower semicontinuous on \(\mathbb{R}^m \)

\(H \): lower semicontinuous on \(\mathbb{R}^n \).

Example: \(F(x, y) = \frac{1}{2} \| x - y \|^2 \)
Alternating Proximal Method

\[
\min L(x, y) := F(x, y) + G(x) + H(y).
\]

Assume: \(\nabla F \) Lipschitz cont. on bounded subsets of \(\mathbb{R}^{\text{m}} \times \mathbb{R}^{\text{n}} \)

\(G \): lower semicontinuous on \(\mathbb{R}^{\text{m}} \)

\(H \): lower semicontinuous on \(\mathbb{R}^{\text{n}} \).

Example: \(F(x, y) = \frac{1}{2} \| x - y \|^2 \)

Alternating Proximal Method

\[
x_{k+1} \in \text{argmin} \left\{ L(x, y_k) + \frac{1}{2} c_k \| x - x_k \|^2 \right\}
\]

\[
y_{k+1} \in \text{argmin} \left\{ L(x_{k+1}, y) + \frac{1}{2} c'_k \| y - y_k \|^2 \right\},
\]

here \(c_k, c'_k \) are suitable sequences of positive scalars.

Descent Techniques
Consider $F(B, C) = \frac{1}{2} \| A - BC \|_F^2$: convex separately in B and C.

We use $F(C)$ to denote function restricted to C.

Since $F(C)$ is separable, suffices to illustrate for

$$\min_{c \geq 0} f(c) = \frac{1}{2} \| a - Bc \|_2^2$$

Recall, our aim is: find C_{k+1} such that $F(B_k, C_{k+1}) \leq F(B_k, C_k)$.
Descent technique

\[
\min_{c \geq 0} \quad f(c) = \frac{1}{2} \| a - Bc \|_2^2
\]

1. Find a function \(g(c, \tilde{c}) \) that satisfies:

\[
\begin{align*}
 g(c, c) & = f(c), \quad \text{for all } c, \\
 g(c, \tilde{c}) & \geq f(c), \quad \text{for all } c, \tilde{c}.
\end{align*}
\]
Descent technique

\[
\min_{c \geq 0} \quad f(c) = \frac{1}{2} \| a - Bc \|_2^2
\]

1. Find a function \(g(c, \tilde{c}) \) that satisfies:

\[
\begin{align*}
 g(c, c) &= f(c), \quad \text{for all } c, \\
 g(c, \tilde{c}) &\geq f(c), \quad \text{for all } c, \tilde{c}.
\end{align*}
\]

2. Compute \(c^{t+1} = \arg\min_{c \geq 0} g(c, c^t) \).
Descent technique

\[
\min_{c \geq 0} \quad f(c) = \frac{1}{2} \| a - Bc \|_2^2
\]

1. Find a function \(g(c, \tilde{c}) \) that satisfies:
 \[
 g(c, c) = f(c), \quad \text{for all} \quad c,
 \]
 \[
 g(c, \tilde{c}) \geq f(c), \quad \text{for all} \quad c, \tilde{c}.
 \]

2. Compute \(c^{t+1} = \arg\min_{c \geq 0} g(c, c^t) \)

3. Then we have descent
Descent technique

\[
\min_{c \geq 0} \quad f(c) = \frac{1}{2} \|a - Bc\|_2^2
\]

1. Find a function \(g(c, \tilde{c}) \) that satisfies:
 \[
 g(c, c) = f(c), \quad \text{for all} \quad c,
 \]
 \[
 g(c, \tilde{c}) \geq f(c), \quad \text{for all} \quad c, \tilde{c}.
 \]

2. Compute \(c^{t+1} = \arg\min_{c \geq 0} g(c, c^t) \)

3. Then we have descent
 \[
 f(c^{t+1})
 \]
1. Find a function $g(c, \tilde{c})$ that satisfies:

$$
g(c, c) = f(c), \quad \text{for all } c,$$

$$
g(c, \tilde{c}) \geq f(c), \quad \text{for all } c, \tilde{c}.
$$

2. Compute $c^{t+1} = \arg\min_{c \geq 0} g(c, c^t)$

3. Then we have descent

$$
f(c^{t+1}) \overset{\text{def}}{=} g(c^{t+1}, c^t)
$$
Descent technique

\[\min_{c \geq 0} f(c) = \frac{1}{2} \| a - Bc \|_2^2 \]

1. Find a function \(g(c, \tilde{c}) \) that satisfies:
 \[
 g(c, c) = f(c), \quad \text{for all } c, \\
 g(c, \tilde{c}) \geq f(c), \quad \text{for all } c, \tilde{c}.
 \]

2. Compute \(c^{t+1} = \arg\min_{c \geq 0} g(c, c^t) \)

3. Then we have descent

\[
 f(c^{t+1}) \overset{\text{def}}{=} \arg\min_{c \geq 0} g(c^{t+1}, c^t) \leq g(c^{t+1}, c^t) \leq g(c^t, c^t)
\]
Descent technique

$$\min_{c \geq 0} f(c) = \frac{1}{2}\|a - Bc\|^2_2$$

1. Find a function $g(c, \tilde{c})$ that satisfies:
 $$g(c, c) = f(c), \quad \text{for all } c,$$
 $$g(c, \tilde{c}) \geq f(c), \quad \text{for all } c, \tilde{c}.$$

2. Compute $c^{t+1} = \text{argmin}_{c \geq 0} g(c, c^t)$

3. Then we have descent
 $$f(c^{t+1}) \overset{\text{def}}{=} g(c^{t+1}, c^t) \overset{\text{argmin}}{\leq} g(c^t, c^t) \overset{\text{def}}{=} f(c^t).$$
Descent technique – constructing g

We exploit that $h(x) = \frac{1}{2} x^2$ is a convex function

$$h(\sum_i \lambda_i x_i) \leq \sum_i \lambda_i h(x_i), \text{ where } \lambda_i \geq 0, \sum_i \lambda_i = 1$$
Descent technique – constructing g

We exploit that $h(x) = \frac{1}{2} x^2$ is a convex function

$$h(\sum_i \lambda_i x_i) \leq \sum_i \lambda_i h(x_i), \text{ where } \lambda_i \geq 0, \sum_i \lambda_i = 1$$

$$f(c) = \frac{1}{2} \sum_i (a_i - b_i^T c)^2 =$$
Descent technique – constructing g

We exploit that $h(x) = \frac{1}{2}x^2$ is a **convex function**

\[
h(\sum \lambda_i x_i) \leq \sum \lambda_i h(x_i), \text{ where } \lambda_i \geq 0, \sum \lambda_i = 1
\]

\[
f(c) = \frac{1}{2} \sum_i (a_i - b_i^T c)^2 = \frac{1}{2} \sum_i a_i^2 - 2a_i b_i^T c + (b_i^T c)^2
\]
Descent technique – constructing g

We exploit that $h(x) = \frac{1}{2} x^2$ is a convex function

$$h(\sum_i \lambda_i x_i) \leq \sum_i \lambda_i h(x_i), \text{ where } \lambda_i \geq 0, \sum_i \lambda_i = 1$$

$$f(c) = \frac{1}{2} \sum_i (a_i - b_i^T c)^2 = \frac{1}{2} \sum_i a_i^2 - 2a_i b_i^T c + (b_i^T c)^2$$

$$= \frac{1}{2} \sum_i a_i^2 - 2a_i b_i^T c + \frac{1}{2} \sum_i (\sum_j b_{ij} c_j)^2$$
Descent technique – constructing g

We exploit that $h(x) = \frac{1}{2} x^2$ is a convex function

\[
h\left(\sum_i \lambda_i x_i\right) \leq \sum_i \lambda_i h(x_i), \text{ where } \lambda_i \geq 0, \sum_i \lambda_i = 1
\]

\[
f(c) = \frac{1}{2} \sum_i (a_i - b_i^T c)^2 = \frac{1}{2} \sum_i a_i^2 - 2a_i b_i^T c + (b_i^T c)^2
\]

\[
= \frac{1}{2} \sum_i a_i^2 - 2a_i b_i^T c + \frac{1}{2} \sum_i \left(\sum_j b_{ij} c_j\right)^2
\]

\[
= \frac{1}{2} \sum_i a_i^2 - 2a_i b_i^T c
\]

Suvrit Sra (MIT)
Convex, nonconvex, and geometric optim.
Descent technique – constructing g

We exploit that $h(x) = \frac{1}{2} x^2$ is a convex function

\[
 h(\sum_i \lambda_i x_i) \leq \sum_i \lambda_i h(x_i) \text{, where } \lambda_i \geq 0, \sum_i \lambda_i = 1
\]

\[
 f(c) = \frac{1}{2} \sum_i (a_i - b_i^T c)^2 = \frac{1}{2} \sum_i a_i^2 - 2a_i b_i^T c + (b_i^T c)^2
\]

\[
 = \frac{1}{2} \sum_i a_i^2 - 2a_i b_i^T c + \frac{1}{2} \sum_i \left(\sum_j b_{ij} c_j \right)^2
\]

\[
 = \frac{1}{2} \sum_i a_i^2 - 2a_i b_i^T c + \frac{1}{2} \sum_i \left(\sum_j \lambda_{ij} b_{ij} c_j / \lambda_{ij} \right)^2
\]
Descent technique – constructing g

We exploit that $h(x) = \frac{1}{2} x^2$ is a convex function

$h(\sum_i \lambda_i x_i) \leq \sum_i \lambda_i h(x_i)$, where $\lambda_i \geq 0$, $\sum_i \lambda_i = 1$

$$f(c) = \frac{1}{2} \sum_i (a_i - b_i^T c)^2 = \frac{1}{2} \sum_i a_i^2 - 2a_i b_i^T c + (b_i^T c)^2$$

$$= \frac{1}{2} \sum_i a_i^2 - 2a_i b_i^T c + \frac{1}{2} \sum_i (\sum_j b_{ij} c_j)^2$$

$$= \frac{1}{2} \sum_i a_i^2 - 2a_i b_i^T c + \frac{1}{2} \sum_i (\sum_j \lambda_{ij} b_{ij} c_j / \lambda_{ij})^2$$

$$\leq \frac{1}{2} \sum_i a_i^2 - 2a_i b_i^T c + \frac{1}{2} \sum_{ij} \lambda_{ij} (b_{ij} c_j / \lambda_{ij})^2$$
Descent technique – constructing g

We exploit that $h(x) = \frac{1}{2} x^2$ is a convex function

$$h(\sum_i \lambda_i x_i) \leq \sum_i \lambda_i h(x_i), \text{ where } \lambda_i \geq 0, \sum_i \lambda_i = 1$$

$$f(c) = \frac{1}{2} \sum_i (a_i - b_i^T c)^2 = \frac{1}{2} \sum_i a_i^2 - 2a_i b_i^T c + (b_i^T c)^2$$

$$= \frac{1}{2} \sum_i a_i^2 - 2a_i b_i^T c + \frac{1}{2} \sum_i (\sum_j b_{ij} c_j)^2$$

$$= \frac{1}{2} \sum_i a_i^2 - 2a_i b_i^T c + \frac{1}{2} \sum_i (\sum_j \lambda_{ij} b_{ij} c_j / \lambda_{ij})^2$$

$$\leq \frac{1}{2} \sum_i a_i^2 - 2a_i b_i^T c + \frac{1}{2} \sum_{ij} \lambda_{ij} (b_{ij} c_j / \lambda_{ij})^2$$

$$=: g(c, \tilde{c}), \text{ where } \lambda_{ij} \text{ are convex coeffts}$$
Descent technique – constructing g

\[
\begin{align*}
f(c) &= \frac{1}{2} \| a - Bc \|_2^2 \\
g(c, \tilde{c}) &= \frac{1}{2} \| a \|_2^2 - \sum_i a_i b_i^T c + \frac{1}{2} \sum_{ij} \lambda_{ij} (b_{ij} c_j / \lambda_{ij})^2.
\end{align*}
\]

Only remains to pick λ_{ij} as functions of \tilde{c}
Descent technique – constructing g

\[f(c) = \frac{1}{2} \| a - Bc \|_2^2 \]
\[g(c, \tilde{c}) = \frac{1}{2} \| a \|_2^2 - \sum_i a_i b_i^T c + \frac{1}{2} \sum_{ij} \lambda_{ij} (b_{ij} c_j / \lambda_{ij})^2. \]

Only remains to pick λ_{ij} as functions of \tilde{c}

\[\lambda_{ij} = \frac{b_{ij} \tilde{c}_j}{\sum_k b_{ik} \tilde{c}_k} = \frac{b_{ij} \tilde{c}_j}{b_i^T \tilde{c}} \]
Descent technique – constructing g

\[f(c) = \frac{1}{2} \| a - Bc \|_2^2 \]
\[g(c, \tilde{c}) = \frac{1}{2} \| a \|_2^2 - \sum_i a_i b_i^T c + \frac{1}{2} \sum_{ij} \lambda_{ij} (b_{ij} c_j / \lambda_{ij})^2. \]

Only remains to pick λ_{ij} as functions of \tilde{c}

\[\lambda_{ij} = \frac{b_{ij} \tilde{c}_j}{\sum_k b_{ik} \tilde{c}_k} = \frac{b_{ij} \tilde{c}_j}{b_i^T \tilde{c}} \]

Exercise: Verify that $g(c, c) = f(c)$;

Exercise: Let $f(c) = \sum_i a_i \log(\frac{a_i}{(Bc)_i}) - a_i + (Bc)_i$. Derive an auxiliary function $g(c, \tilde{c})$ for this $f(c)$.

Suvrit Sra (MIT) Convex, nonconvex, and geometric optim.
Descent technique – Exercise

Key step

\[c^{t+1} = \arg\min_{c \geq 0} g(c, c^t). \]

Exercise: Solve \(\frac{\partial g(c, c^t)}{\partial c_p} = 0 \) to obtain

\[c_p = c^t_p \frac{[B^T a]_p}{[B^T B c^t]_p} \]

This yields the “multiplicative update” algorithm of Lee/Seung (1999).
MM algorithms

- We exploited convexity of x^2
- Expectation Maximization (EM) algorithm exploits convexity of $-\log x$
- Other choices possible, e.g., by varying λ_{ij}
- Our technique one variant of repertoire of Majorization-Minimization (MM) algorithms
- gradient-descent also an MM algorithm
- Related to \textit{d.c. programming}
- MM algorithms subject of a separate lecture!
Generic descent method

Nonsmooth, nonconvex min

\[
\min \quad f(x)
\]

Methods that generate \((x_k, w_k)\) such that

\[
f(x_{k+1}) + a\|x_{k+1} - x_k\|^2 \leq f(x_k)
\]

there exists \(w_{k+1} \in \partial f(x_{k+1})\) s.t. \(\|x_{k+1} - x_k\| \geq b\|w_{k+1}\|\).
Generic descent method

Nonsmooth, nonconvex min

\[
\min f(x)
\]

Methods that generate \((x_k, w_k)\) such that

\[
f(x_{k+1}) + a\|x_{k+1} - x_k\|^2 \leq f(x_k)
\]

there exists \(w_{k+1} \in \partial f(x_{k+1})\) s.t. \(\|x_{k+1} - x_k\| \geq b\|w_{k+1}\|\).

Condition 1: Sufficient descent from \(x_k\) to \(x_{k+1}\)

Condition 2: Captures inexactness (approx. optimality)

Example: captures nonconvex proximal gradient method.

Other Alternating methods

- Nonconvex ADMM (e.g., arXiv:1410.1390)
- Nonconvex Douglas-Rachford (e.g., Borwein’s webpage!)
- Alternating minimization for global optimization
 e.g., [Jain, Netrapalli, Sanghavi (2013). *Low-rank matrix completion using alternating minimization*. STOC 2013.]
- BCD with more than 2 blocks
- Several others...
Large-scale methods
Stochastic optimization

Assumption 1: Possible to generate iid samples ξ_1, ξ_2, \ldots

Assumption 2: Oracle yields **stochastic gradient** $g(x, \xi)$, i.e.,

$$G(x) := \mathbb{E}[g(x, \xi)] \quad \text{s.t.} \quad G(x) \in \partial F(x).$$
Stochastic optimization

Assumption 1: Possible to generate iid samples ξ_1, ξ_2, \ldots

Assumption 2: Oracle yields stochastic gradient $g(x, \xi)$, i.e.,

$$G(x) := \mathbb{E}[g(x, \xi)] \text{ s.t. } G(x) \in \partial F(x).$$

Theorem Let $\xi \in \Omega$; If $f(\cdot, \xi)$ is convex, and $F(\cdot)$ is finite valued in a neighborhood of x, then

$$\partial F(x) = \mathbb{E}[\partial_x f(x, \xi)].$$
Stochastic optimization

Assumption 1: Possible to generate iid samples ξ_1, ξ_2, \ldots

Assumption 2: Oracle yields stochastic gradient $g(x, \xi)$, i.e.,

$$G(x) := \mathbb{E}[g(x, \xi)] \quad \text{s.t.} \quad G(x) \in \partial F(x).$$

Theorem Let $\xi \in \Omega$; If $f(\cdot, \xi)$ is convex, and $F(\cdot)$ is finite valued in a neighborhood of x, then

$$\partial F(x) = \mathbb{E}[\partial_x f(x, \xi)].$$

- So $g(x, \omega) \in \partial_x f(x, \omega)$ is a stochastic subgradient.
Stochastic gradient

- Let $x_0 \in \mathcal{X}$
- For $k \geq 0$
 - Sample ξ_k; compute $g(x_k, \xi_k)$ using oracle
 - Update $x_{k+1} = P_{\mathcal{X}}(x_k - \alpha_k g(x_k, \xi_k))$, where $\alpha_k > 0$

Simply write

$$x_{k+1} = P_{\mathcal{X}}(x_k - \alpha_k g_k)$$
The incremental gradient method (IGM)

- Let $x_0 \in \mathbb{R}^n$
- For $k \geq 0$
 1. Pick $i(k) \in \{1, 2, \ldots, n\}$ uniformly at random
 2. $x_{k+1} = x_k - \eta_k \nabla f_{i(k)}(x_k)$
Incremental Gradient Methods

\[\min F(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x) \]

The incremental gradient method (IGM)

- Let \(x_0 \in \mathbb{R}^n \)
- For \(k \geq 0 \)
 1. Pick \(i(k) \in \{1, 2, \ldots, n\} \) uniformly at random
 2. \(x_{k+1} = x_k - \eta_k \nabla f_{i(k)}(x_k) \)

\(g \equiv \nabla f_{i(k)} \) may be viewed as a \textbf{stochastic gradient}

\[g := g^\text{true} + e, \text{ where } e \text{ is mean-zero noise: } \mathbb{E}[e] = 0 \]
Example application

Multiframe blind deconvolution

(video)
Problem setup

time t

\[
\begin{align*}
y_t &= a_t \ast x + n_t \\
0 &= \ast + n_0 \\
1 &= \ast + n_1 \\
2 &= \ast + n_2 \\
k &= \ast + n_k
\end{align*}
\]
Formulation as matrix factorization

\[
\begin{bmatrix}
\vdots \\
y_1 & y_n \\
\vdots
\end{bmatrix} \approx \begin{bmatrix}
\vdots \\
a_1 & a_t \\
\vdots
\end{bmatrix} \times x
\]

Rewrite: \(a \times x = Ax = Xa \)

\[
\begin{bmatrix}
y_1 & y_2 & \cdots & y_t
\end{bmatrix} \approx X \begin{bmatrix}
a_1 & a_2 & \cdots & a_t
\end{bmatrix}
\]

\(Y \approx XA \)
Large-scale problem

Example, 5000 frames of size 512×512

$$Y_{262144 \times 5000} \approx X_{262144 \times 262144} A_{262144 \times 5000}$$

Without structure \approx 70 billion parameters!
With structure, \approx 4.8 million parameters!
Example, 5000 frames of size 512×512

$Y_{262144 \times 5000} \approx X_{262144 \times 262144} A_{262144 \times 5000}$

Without structure ≈ 70 billion parameters!

With structure, ≈ 4.8 million parameters!

Despite structure, alternating minimization impractical

Fix X, solve for A, requires updating ≈ 4.5 million params
Solving the problem

\[\min_{A_t, x} \sum_{t=1}^{T} \frac{1}{2} \| y_t - A_t x \|^2 + \Omega(x) + \Gamma(A_t) \]
Solving the problem

\[
\min_{A_t, x} \sum_{t=1}^{T} \frac{1}{2} \| y_t - A_t x \|^2 + \Omega(x) + \Gamma(A_t)
\]

Initialize guess \(x_0 \)
For \(t = 1, 2, \ldots \)
1. Observe image \(y_t \);
Solving the problem

\[
\min_{A_t, x} \sum_{t=1}^{T} \frac{1}{2} \| y_t - A_t x \|^2 + \Omega(x) + \Gamma(A_t)
\]

Initialize guess \(x_0 \)
For \(t = 1, 2, \ldots \)
1. Observe image \(y_t \);
2. Use \(x_{t-1} \) to estimate \(A_t \)
Solving the problem

\[
\min_{A_t, x} \sum_{t=1}^{T} \frac{1}{2} \|y_t - A_t x\|^2 + \Omega(x) + \Gamma(A_t)
\]

Initialize guess \(x_0\)
For \(t = 1, 2, \ldots\)
1. Observe image \(y_t\);
2. Use \(x_{t-1}\) to **estimate** \(A_t\)
3. Solve **optimization subproblem** to obtain \(x_t\)

[Harmeling, Hirsch, Sra, Schölkopf (ICCP'09); Hirsch, Sra, Schölkopf, Harmeling (CVPR'10); Hirsch, Harmeling, Sra, Schölkopf (Astron. & Astrophy. (AA) 2011); Harmeling, Hirsch, Sra, Schölkopf, Schuler (Patent 2012); Sra (NIPS'12)]
Solving the problem

\[
\min_{A_t, x} \sum_{t=1}^{T} \frac{1}{2} \| y_t - A_t x \|^2 + \Omega(x) + \Gamma(A_t)
\]

Initialize guess \(x_0\)

For \(t = 1, 2, \ldots\)

1. Observe image \(y_t\);
2. Use \(x_{t-1}\) to **estimate** \(A_t\)
3. Solve **optimization subproblem** to obtain \(x_t\)

Step 2. Model, estimate blur \(A_t\) — separate talk

Step 3. convex subproblem — reuse convex building blocks

Do Steps 2, 3 **inexactlly** \(\Rightarrow\) realtime processing!

[Harmeling, Hirsch, Sra, Schölkopf (ICCP’09); Hirsch, Sra, Schölkopf, Harmeling (CVPR’10); Hirsch, Harmeling, Sra, Schölkopf (Astron. & Astrophy. (AA) 2011); Harmeling, Hirsch, Sra, Schölkopf, Schuler (Patent 2012); Sra (NIPS’12)]

Suvrit Sra (MIT) Convex, nonconvex, and geometric optim.
Solving the problem: rewriting

Key idea

\[
\min_{X,A} \Phi(X,A) \equiv \min_X \left(\min_A \Phi(X,A) \right) =
\]

but now \(F \) is nonconvex

Suvrit Sra (MIT) Convex, nonconvex, and geometric optim.
Solving the problem: rewriting

Key idea

\[
\min_{X,A} \Phi(X, A) \equiv \min_X \left(\min_A \Phi(X, A) \right) = \min_X F(X)
\]

\[
F(X) \ := \ \min_A \Phi(X, A)
\]
Solving the problem: rewriting

Key idea

\[
\min_{X,A} \Phi(X, A) \equiv \min_X \left(\min_A \Phi(X, A) \right) = \min_X F(X)
\]

\[
F(X) := \min_A \Phi(X, A)
\]

\[
\Phi(X, A) = \| Y - XA \|^2 + \Omega(X) + \Gamma(A)
\]

\[
\min_X F(X) + \Omega(X)
\]

but now \(F \) is nonconvex
Key to scalability

\[X^{\text{new}} \leftarrow \text{prox}_{\alpha \Omega}(X - \alpha \nabla F(X)) \]
Key to scalability

\[X^{\text{new}} \leftarrow \text{prox}_{\alpha \Omega}(X - \alpha \nabla F(X) + e) + p \]

If gradient is \textit{inexactly} computed

If \text{prox}_\Omega \textit{inexactly} computed
Key to scalability

\[X^{\text{new}} \leftarrow \text{prox}_{\alpha \Omega}(X - \alpha \nabla F(X) + e) + p \]

If gradient is **inexactly** computed
If \(\text{prox}_\Omega \) **inexactly** computed

Example: Say \(F(X) = \sum_{i=1}^{m} f_i(X) \)
Instead of \(\nabla F(X) \), use \(\nabla f_k(x) \)—**incremental**
\(m \) times cheaper (\(m \) can be in the millions or more)

Inexactness: key to scalability
incremental prox-method for **large-scale nonconvex**

[Sra (NIPS 12)]; (also arXiv: [math.OC-1109.0258])

Theorem Limits points are approximately stationary.
Non-asymptotic convergence

\[\min \frac{1}{n} \sum_i f_i(x) \]

SGD

1. For \(t = 0 \) to \(T - 1 \):
 1. Pick \(i_t \) from \(\{1, \ldots, n\} \)
 2. Update \(x_{t+1} \leftarrow x_t - \eta_t \nabla f_i(x_t) \)

Theorem (Ghadimi, Lan). Suppose \(\|\nabla f_i(x)\| \leq G \) for all \(i \), \(\eta_t = c / \sqrt{T} \), and \(f \in C_1^L \). Then,

\[\mathbb{E} \left[\|\nabla f\|^2 \right] \leq \frac{1}{c} \sqrt{T} \left(f(x_0) - f(x^*) + \frac{1}{2} L c^2 G^2 \right) \]

Non-asymptotic convergence

\[\min \frac{1}{n} \sum_i f_i(x) \]

SGD

1. For \(t = 0 \) to \(T - 1 \):
 1. Pick \(i_t \) from \(\{1, \ldots, n\} \)
 2. Update \(x_{t+1} \leftarrow x_t - \eta_t \nabla f_i(x_t) \)

Theorem (Ghadimi, Lan). Suppose \(\|\nabla f_i(x)\| \leq G \) for all \(i \), \(\eta_t = c/\sqrt{T} \), and \(f \in C^1_L \). Then,

\[
\mathbb{E}[\|\nabla f\|^2] \leq \frac{1}{c\sqrt{T}} \left(f(x_0) - f(x^*) + \frac{1}{2}Lc^2G^2 \right)
\]

Other ncvx incremental methods

First two do not prove rates; third one builds on Ghadimi & Lan’s analysis to provide rate on $\mathbb{E}[\|\nabla f\|^2]$
Geometric Optimization
Geometry Everywhere

- The usual vector space
- Manifolds (hypersphere, orthogonal matrices, complicated surfaces)
- Convex sets (probability simplex, semidefinite cone, polyhedra)
- Metric spaces (tree space, Wasserstein metric, negatively curved spaces)

Machine Learning
Graphics
Robotics
Vision
BCI
NLP
Statistics
Geometric Data

Rotations

Covariances as data / features / params: $X_1, X_2, \ldots, X_n \succeq 0$

Radar DTI CV BCI DeepLrn

[Cherian, Sra, Papanikolopoulos (2012); Cherian, Sra (2015)]
Averaging Matrices

\[
\min_{M \succ 0} \sum_i \delta^2_R(M, A_i)
\]

\[
\min_{M \succ 0} \sum_i \delta^2_S(M, A_i)
\]

\[
\delta^2_R(X, Y) := \| \log \text{Eig}(X^{-1}Y) \|^2
\]

\[
\delta^2_S(X, Y) := \log \det \left(\frac{X + Y}{2} \right) - \frac{1}{2} \log \det(XY)
\]

nonconvex but globally solvable!

[Sra (2012, 2014)]
Non-Gaussian Models

Natural Image Statistics
- Extract 200,000 training patches from 4167 images
- 10 sets of 100,000 test patches
- Log-transform intensities; add small amount of white noise

\[p(x) \propto \frac{(x^T \Sigma^{-1} x)^{a-d/2} e^{-\frac{a}{d} x^T \Sigma^{-1} x}}{\det(\Sigma)^{1/2}} \]

Elliptically Contoured Distributions (ECD)

[Hosseini, Sra (2015a)]
Likelihood maximization

Given observations x_1, x_2, \ldots, x_n find m.l.e. by solving

\[
\frac{n}{2} \log \det(\Sigma) - \left(a - \frac{d}{2}\right) \sum_{i=1}^{n} \log(x_i^T \Sigma^{-1} x_i) + \frac{a}{d} \text{trace}(\Sigma^{-1} \sum_{i} x_i x_i^T)
\]

convex or nonconvex: often globally solvable!
Geometric Convexity

Convexity

Geodesic convexity

Convex, nonconvex, and geometric opt.

Metric spaces & curvature: [Alexandrov; Busemann; Cartan; Bridson, Häflinger; Gromov; Perelman]
Geometric Optimization

Recognizing, constructing, and optimizing geodesically convex functions

[Hauser, Sra (2013)]

Corollaries

\[X \mapsto \log \det (B + \sum_i A_i^* X A_i) \]

\[X \mapsto \log \text{per}(B + \sum_i A_i^* X A_i) \]

\[\delta^2_R(X, Y), \quad \delta^2_S(X, Y) \]

(jointly g-convex)

Many more theorems and corollaries

One-D version known as: Geometric Programming

www.stanford.edu/~boyd/papers/gp_tutorial.html

[Hauser, Sra (2015)]

\[X \#_t Y := X^{1/2} (X^{-1/2} Y X^{-1/2})^t X^{1/2} \]

\[f(X \#_t Y) \leq (1 - t)f(X) + tf(Y) \]
Averaging Matrices

$$\min_{M \geq 0} \Phi(M) = \sum_i \delta^2_{S}(M, A_i)$$

$$\nabla \Phi(M) = 0$$

$$M^{-1} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{M + A_i}{2} \right)^{-1}$$
Averaging Matrices

\[
\min_{M > 0} \Phi(M) = \sum_i \delta^2_S(M, A_i)
\]

\[\nabla \Phi(M) = 0\]

\[
M_{k+1}^{-1} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{M_k + A_i}{2} \right)^{-1}
\]

Plug-and-play!

Nonlinear Perron-Frobenius fixed-point theory

[Sra (2012)]
Theorem: Iteration is a contraction in a suitable metric space

\[\delta_T(X, Y) := \| \log(X^{-1/2} Y X^{-1/2}) \|_\infty \]

Key properties of this metric (see [Sra, Hosseini SIOPT'15] for details)

\[
\begin{align*}
\delta_T(X^{-1}, Y^{-1}) &= \delta_T(X, Y) \\
\delta_T(B^*X B, B^*Y B) &= \delta_T(X, Y), \quad B \in \text{GL}_n(\mathbb{C}) \\
\delta_T(X^t, Y^t) &\leq |t| \delta_T(X, Y), \quad \text{for } t \in [-1, 1] \\
\delta_T \left(\sum_i w_i X_i, \sum_i w_i Y_i \right) &\leq \max_{1 \leq i \leq m} \delta_T(X_i, Y_i), \quad w_i \geq 0, w \neq 0 \\
\delta_T(X + A, Y + A) &\leq \frac{\alpha}{\alpha + \beta} \delta_T(X, Y), \quad A \succeq 0,
\end{align*}
\]

Note: Contraction does not depend on geodesic convexity
Matrix Square Root

Broadly applicable

Key to ‘expm’, ‘logm’

Convex, nonconvex, and geometric opt.
Nonconvex optimization through the Euclidean lens

\[
\min_{X \in \mathbb{R}^{n \times n}} \| M - X^2 \|_F^2
\]

Gradient descent

\[
X_{t+1} \leftarrow X_t - \eta (X_t^2 - M)X_t - \eta X_t (X_t^2 - M)
\]

Simple(ish) algo; linear convergence; **nontrivial** analysis

[Jain, Jin, Kakade, Netrapalli; Jul. 2015]
Matrix Square Root

Nonconvex optimization thorough non-Euclidean lens

\[
\min_{X \succ 0} \delta_S^2(X, A) + \delta_S^2(X, I)
\]

Fixed-point iteration

\[
X_{k+1} \leftarrow [(X_k + A)^{-1} + (X_k + I)^{-1}]^{-1}
\]

Simple method; linear convergence; 1/2 page analysis!

Global optimality thanks to geodesic convexity

[Sra; Jul. 2015] \(\delta_S^2(X, Y) := \frac{1}{2} \log \det \left(\frac{X+Y}{2} \right) - \frac{1}{2} \log \det(XY) \)
Matrix Square Root

50 × 50 matrix $I + \beta UU^T$

$\kappa \approx 64$
Gaussian Mixture Models

\[p_{\text{mix}}(x) := \sum_{k=1}^{K} \pi_k p_{\mathcal{N}}(x; \Sigma_k, \mu_k) \]

\[\max \prod_i p_{\text{mix}}(x_i) \]

Expectation maximization (EM): default choice

\[p_{\mathcal{N}}(x; \Sigma, \mu) \propto \frac{1}{\sqrt{\det(\Sigma)}} \exp \left(-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right) \]

[Hosseini, Sra (2015b)]
Gaussian Mixture Models

- **Nonconvex**: both via Euclidean and manifold view

- Recent surge of theoretical results in TCS

- Numerically: EM as default choice

 (Newton, quasi-Newton, other optim. often inferior to EM for GMMs — Xu, Jordan ’96)

Difficulty: Positive definiteness constraint on Σ
Gaussian Mixture Models

<table>
<thead>
<tr>
<th>K</th>
<th>EM</th>
<th>Manifold-CG</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>17s / 29.28</td>
<td>947s / 29.28</td>
</tr>
<tr>
<td>5</td>
<td>202s / 32.07</td>
<td>5262s / 32.07</td>
</tr>
<tr>
<td>10</td>
<td>2159s / 33.05</td>
<td>17712 / 33.03</td>
</tr>
</tbody>
</table>

GMM for $d=35$

Off-the-shelf manifold optim. fails!

www.manopt.org
How To Fix: Intuition

log-likelihood for 1 component

\[
\max_{\mu, \Sigma \succ 0} \mathcal{L}(\mu, \Sigma) := \sum_{i=1}^{n} \log p_{\mathcal{N}}(x_i; \mu, \Sigma).
\]

Euclidean convex \textbf{not} geodesically convex
Geodesic Convexity

\[y_i = [x_i; 1] \quad S = \begin{bmatrix} \Sigma & \mu \mu^T \\ \mu^T & \mu \end{bmatrix} \]

\[
\max_{S > 0} \hat{\mathcal{L}}(S) := \sum_{i=1}^{n} \log q_N(y_i; S),
\]

Theorem. The modified log-likelihood is g-convex. Local max of modified LL is local max of original.

\[f(X\#_t Y) \leq (1 - t)f(X) + tf(Y) \]
\[X\#_t Y := X^{\frac{1}{2}}(X^{-\frac{1}{2}}YX^{-\frac{1}{2}})^t X^{\frac{1}{2}} \]

[Hosseini, Sra (2015b)] [Sra, Hosseini (2015)]
Numerical Results

<table>
<thead>
<tr>
<th>K</th>
<th>EM</th>
<th>Manifold-CG</th>
<th>Reparam-LBFGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>17s / 29.28</td>
<td>947s / 29.28</td>
<td>14s / 29.28</td>
</tr>
<tr>
<td>5</td>
<td>202s / 32.07</td>
<td>5262s / 32.07</td>
<td>117s / 32.07</td>
</tr>
<tr>
<td>10</td>
<td>2159s / 33.05</td>
<td>17712 / 33.03</td>
<td>658s / 33.06</td>
</tr>
</tbody>
</table>

GMM, $d=35$; convergence tol = 1E-5

Many more results in: [Hosseini, Sra (2015b); arXiv: 1506.07677]
Gaussian Mixture Models

Key ingredients

1. L-BFGS on the manifold
2. Careful line-search procedure

Toolboxes at:
suvrit.de/work/soft/gopt.html
github.com/utvisionlab/mixest

[Sra, Hosseini (2015); Hosseini, Sra (2015b)]
Many More Connections!

- Fundamental theory, duality, etc.
- Machine learning
- Deep learning
- Signal processing
- Engineering (EE, Aero, etc.)
- Brain-Computer interfaces
- Quantum Information Theory
- Geometry of tree-space
- Hyperbolic cones, graphs, spaces
- Nonlinear Perron-Frobenius Theory
- Matrix analysis, algebra

http://suvrit.de/gopt.html
Convex, nonconvex, and geometric opt.
Suvrit Sra (MIT)

See Springer Encyclopedia on Optimization (over 4500 pages!)
Convex relaxations of nonconvex problems (SDP relaxations, SOS, etc.)
Algorithms (trust-region methods, cutting plane techniques, bundle methods, active-set methods, and 100s of others)
Applications
Software, Systems
Parallel and distributed algorithms
Theory: convex analysis, geometry, probability
Polynomials, sums-of-squares, noncommutative polynomials
Infinite dimensional optimization
Discrete optimization, including submodular minimization and maximization
Multi-stage stochastic programming,
Optimizing with probabilistic (chance) constraints
Robust optimization
Algorithms and theory details for optimization on manifolds
Optimization in geodesic metric spaces
And 100s of other things!
Thank you