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Abstract

We present a new algorithmic approach to the
group fused lasso, a convex model that approx-
imates a multi-dimensional signal via an ap-
proximately piecewise-constant signal. This
model has found many applications in mul-
tiple change point detection, signal compres-
sion, and total variation denoising, though
existing algorithms typically using first-order
or alternating minimization schemes. In this
paper we instead develop a specialized pro-
jected Newton method, combined with a pri-
mal active set approach, which we show to
be substantially faster that existing methods.
Furthermore, we present two applications that
use this algorithm as a fast subroutine for a
more complex outer loop: segmenting linear
regression models for time series data, and
color image denoising. We show that on these
problems the proposed method performs very
well, solving the problems faster than state-
of-the-art methods and to higher accuracy.

1 Introduction

Given a multivariate signal y1, y2, . . . , y
T

, with y
t

2
Rn, the (weighted) group fused lasso (GFL) estimator
(Bleakley and Vert, 2011; Aláız et al., 2013) attempts
to find a roughly “piecewise-constant” approximation
to this signal. It determines this approximation by
solving the optimization problem
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where x1, x2, . . . , x
T

are the optimization variables,
w 2 RT

+ are weights for each time point, ! 2 RT�1
+

are regularization parameters, and k · k2 denotes the
Euclidean norm. Intuitively, the "2 norm on the di!er-
ence between consecutive points encourages sparsity in

this di↵erence: each di↵erence x
t

� x
t+1 will typically

be either full or identically zero at the solution, i.e., the
signal x will be approximately piecewise-constant. This
approach generalizes the 1D total variation norm (Tib-
shirani et al., 2005; Barbero and Sra, 2011), which con-
siders only univariate signals. Owing to the piecewise-
constant nature of the approximate signals formed by
the group fused lasso, the approach has found appli-
cations in signal compression, multiple change-point
detection, and total variation denoising. Though sev-
eral algorithms have been proposed to solve (1), to
the best of our knowledge these have involved, at their
foundation, first-order methods such as projected gra-
dient, block coordinate descent, or splitting methods.
Although such algorithms can sometimes obtain rea-
sonable performance, they often fail to quickly find ac-
curate solutions, especially when one wants to solve (1)
to high precision as a “subroutine” (or prox-operator)
in a larger algorithm (Barbero and Sra, 2011).

In this paper, we develop a fast algorithm for solving
the optimization problem (1), based upon a projected
Newton approach. Our method can solve group fused
lasso problems to high numerical precision, often several
orders of magnitude faster than existing state-of-the-art
approaches. At its heart, our method involves dualiz-
ing the optimization problem (1) twice, in a particular
manner, to eliminate the non-di↵erentiable "2 norm
and replace it by simple nonnegativity constraints; we
solve the reformulated problem to high accuracy via a
projected Newton approach. In order to fully exploit
the sparsity of large-scale instances, we combine the
above ideas with a primal active-set method that itera-
tively solves reduced-size problems to find the final set
of non-zero di↵erences for the original GFL problem.

Although our fast fused group lasso method is valuable
in its own right, its real power comes when used as
a proximal subroutine in a more complex algorithm,
an operation that often needs to be solved thousands
of times. With this motivation in mind, we apply our
approach to two applications: segmenting linear regres-
sion models, and color total variation image denoising.



We demonstrate the power of our approach in experi-
ments with real and synthetic data, both for the basic
group fused lasso and these applications, and show
substantial improvement over the state of the art.

2 A fast Newton method for the GFL

We begin by adopting slightly more compact notation,
and rewrite (1) (the primal problem) as

minimize
X

1
2k(X � Y )W 1/2k2

F

+ kXD ⇤k1,2 (P)

where X, Y 2 Rn⇥T denote the matrices

X =
⇥

x1 · · · x
T

⇤
, Y =

⇥
y1 · · · y

T

⇤
; (2)

W := diag(w) and ⇤ := diag(! ); k · k
F

denotes the
Frobenius norm; k · k1,2 denotes the mixed "1,2-norm

kAk1,2 :=
X

i

ka
i

k2, (3)

where a
i

is the i th column of A; and D 2 RT,T�1

denotes the first order di↵erencing operator

D =

2

6664

1 0 0 · · ·
�1 1 0 · · ·
0 �1 1 · · ·
...

...
...

. . .

3

7775
(4)

so that XD takes the di↵erence of the columns of X .

2.1 Dual problems

To solve (P), it is useful to look at its dual and (for our
algorithm) a modified dual of this dual. To derive these
problems, we transform (P) slightly by introducing the
constraint V = XD , and corresponding dual variables
U 2 Rn⇥T�1. The Lagrangian is then given by

L
P

(X, U, V ) := 1
2k(X � Y )W 1/2k2

F

+ kV⇤k1,2

+ trUT (V � XD ).
(5)

Minimizing (5) analytically over X and V gives

X ? = Y � UDT W�1, V ? = 0 i↵ ku
t

k2  !
t

(6)

where u
t

is the t-th column of U; this leads to the dual

maximize
U

� 1
2kUDT W�1/2k2

F

+ trUDT YT

subject to ku
t

k2  !
t

, t = 1, . . . , T � 1.
(D)

Indeed, several past algorithmic approaches have solved
(D) directly using projected gradient methods, see
e.g., (Aláız et al., 2013).

The basis of our algorithm is to form the dual of (D),
but in a manner that leads to a di↵erent problem than

the original primal. In particular, noting that the
constraint ku

t

k2  !
t

is equivalent to the constraint
that ku

t

k2
2  ! 2

t

, we can remove the non-di↵erentiable
"2 norm, and form the Lagrangian

L
D
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2kUDT W�1/2k2

F

+ trUDT YT

+
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t=1
z
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t

).
(7)

Minimizing over U analytically yields

U? = Y D(DT W�1D + Z )�1, (8)

where Z := diag(z), and leads to the dual problem (the
dual of the dual of (P))

min
z�0

1
2 Y D(DT W�1D + Z )�1DT YT + 1

2 (!
2)T z,

(DD)
where ! 2 denotes squaring ! elementwise. This pro-
cedure, taking the dual of the dual of the original
optimization problem, has transformed the original,
non-smooth problem into a smooth optimization prob-
lem subject to a non-negativity constraint, a setting
for which there are several e�cient algorithms. Al-
though (DD) is not easily solved via a standard form
semidefinite program—it involves a matrix fractional
term, for which the standard semidefinite programming
form is computationally unattractive—it can be solved
e�ciently by a number of methods for smooth, bound-
constrained optimization. However, as we will see
below, the Hessian for this problem is typically poorly
conditioned, so the choice of algorithm for minimizing
(DD) has a large impact in practice. Furthermore, be-
cause the z dual variables are non-zero only for the
change points of the original X variables, we expect
that for many regimes we will have very few non-zero z
values. These points motivate the use of projected New-
ton methods (Bertsekas, 1982), which perform Newton
updates on the variables not bound (z 6= 0).

2.2 A projected Newton method for (DD)

Denote the objective of (DD) as f (z); the gradient and
Hessian of f are given by

r
z

f (z) = � 1
2 (U

2)T 1 + 1
2 ! 2,

r2
z

f (z) = UT U � (DT W�1D + Z )�1,
(9)

where as above U = Y D(DT W�1D + Z )�1, U2 de-
notes elementwise squaring of U, and � denotes the
elementwise (Hadamard) product. The projected New-
ton method proceeds as follows: at each iteration, we
construct the set of bound variables

I := {i : z
i

= 0 and (r
z

f (z))
i

> 0}. (10)

We then perform a Newton update only on those vari-
ables that are not bound (Ī, referred to as the free
set), and project back onto the feasible set

zøI  
⇥
zøI � #(r2

z

f (z))�1
øI,øI(rz

f (z))øI
⇤

+ , (11)



Algorithm 1 Projected Newton for GFL

input signal Y 2 Rn⇥T ; weights w 2 RT

+ ; regular-

ization parameters ! 2 RT�1
+ ; tolerance $

output: optimized signal X 2 Rn⇥T

initialization: z 0
repeat

1. Form dual variables and gradient

U  Y D(DW �1D + Z )�1

r
z

f (z) � 1
2 (U

2)T 1 + 1
2 ! 2

2. Compute active constraints

I  {i : z
i

= 0 and (r
z

f (z))
i

> 0}

3. Compute reduced Hessian and Newton direction

H  UT

øI UøI � (DT W�1D + Z )�1
øI,øI

�zøI  �H �1(r
z

f (z))øI

4. Update variables

zøI  [zøI + #�zøI ]+

where # is chosen by line search
until k(r

z

f (z))øIk2  $

where # is a step size (chosen by backtracking, inter-
polation, or other line search), and [·]+ denotes projec-
tion onto the non-negative orthant. The full method is
shown in Algorithm 1. Although the projected Newton
method is conceptually simple, it involves inverting
several (possibly T ⇥ T matrices), which is impractical
if these were to be computed as general matrix opera-
tions. Fortunately, there is a great amount of structure
that can be exploited in this problem.

E!ciently solving Y D(DT W�1D +Z )�1
. One key

operation for the weighted GFL problem is to solve
linear systems of the form DT W�1D + Z , where W
and Z are diagonal. Fortunately, the first matrix is
highly structured: it is a symmetric tridiagonal matrix

DT W�1D =

2
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(12)
and adding Z to it only a↵ects the diagonal. LAPACK
has customized routines for solving problems of this
form: dpttrf (which computes the LDL T factoriza-
tion of the matrix) and dptts2 (which computes the
solution to LDL T X = B via backsubstitution). For

our work, we modified this latter code slightly to solve
systems with the unknown on the left hand size, as is
required for our setting; this lends a slight speedup by
exploiting the memory locality of column-based matri-
ces. The methods factor T � 1⇥ T � 1 matrix in O(T)
time, and solve n left hand sides in time O(T n).

Computing entries of (DT W�1D+Z )�1
. The pro-

jected Newton method also requires more than just
solving equations of the form above: to compute the
Hessian, we must actually also compute entries of the
inverse (DT W�1D + Z )�1 — we need to compute the
entries with rows and columns in Ī. Naively, this would
require solving k = |Ī| left hand sides, corresponding
to the unit bases for the entries in Ī; even using the
fast solver above, this takes time O(T k). To speed
up this operation, we instead use a fast method for
computing the actual entries of the inverse of this tridi-
agonal, using an approach based upon (Usmani, 1994);
this ultimately lets us compute the k2 entries in O(k2)
time, which can be much faster for small free sets.

Specifically, let a 2 RT�1 and b 2 RT�2 denote
the diagonal and the negative o↵-diagonal entries of
DT W�1D +Z respectively (that is, a

i

= 1
wi

+ 1
wi +1

+z
i

and b
i

= 1
wi +1

), we can compute individual entries of

(DT W�1D +Z )�1 as follows (the following adapts the
algorithm in (Usmani, 1994), but has enough simpli-
fications for our case that we state it explicitly here).
Define %, &2 RT via the recursions

%
i+1 = a

i

%
i

� b2
i�1%

i�1, i = 2, . . . , T � 1

%1 = 1, %2 = a1,

&
i

= a
i

&
i+1 � b2

i

&
i+2 , i = T � 2, . . . , 1

&
T

= 1, &
T�1 = a

T�1.

(13)

Then, the (i, j ) entry of (DT W�1D + Z )�1 for j  i
is given by

(DT W�1D + Z )�1
ij

=
1

%
T

⇣Y
j�1

k= i

b
i

⌘
%
i

&
j+1 . (14)

Finally, we can compute all the needed running prod-
ucts

Q
j�1
k= i

b
i

by computing a single cumulative sum

of the logs of the b
i

terms c
i

=
P

i

j=1 log b
i

and then

using the equality
Q

j�1
k= i

b
i

= exp(c
j

� c
i

).

2.3 A primal active set approach

Using the two optimizations mentioned above, the pro-
jected Newton method can very quickly find a solution
accurate to numerical precision for medium sized prob-
lems (T and n on the order of thousands). However,
for problems with substantially larger T , which are
precisely those we are most interested in for many GFL
applications, the approach above begins to break down.
There are two reasons for this: 1) The size of the free



set k = |I|, though often small at the final solution, can
be significantly larger at intermediate iterations; since
the Newton method ultimately does involve an O(k3)
time to invert the Hessian restricted to the free set, this
can quickly render the algorithm impractical. 2) Even
with small free sets, the basic O(T n) cost required for
a single pass over the data at each Newton iteration
starts to dominate, especially since a significant num-
ber of iterations to find the correct free set may be
required (only after finding the correct free set does
one obtain quadratic convergence rates).

To overcome these problems, we consider a further layer
to the algorithm, which wraps our fast projected New-
ton solver inside a primal active-set method. The basic
intuition is that, at the optimal solution to the original
GFL problem, there will typically be very few change
points in the solution X ? (these correspond exactly
to those z variables that are non-zero). If we knew
these changes points ahead of time, we could solve a
substantially reduced (weighted) GFL problem that
was equivalent to the original problem. Specifically, let
J ✓ {1, . . . , T � 1} denote the optimal set of change
point locations for the primal problem. By the rela-
tionship of dual problems, this will be identical to the
set of free variables Ī at the optimal solution, but since
we treat these di↵erently in the algorithmic design we
use di↵erent notation. Then the original problem

minimize
X

k(X � Y )W 1/2k2
F

+ kXD ⇤k1,2, (15)

where X 2 Rn⇥T , is equivalent to the reduced problem

minimize
X

0
k(X 0�Y 0)W 01/2k2

F

+kX 0D 0⇤J ,J k1,2 (16)

with optimization variable X 0 2 Rn⇥k+1 for k = |J |,
where D 0 2 Rk+1 ⇥k denotes the same first order dif-
ferences matrix but now over only k + 1-sized vectors,
and where Y 0 and W 0 = diag(w0) are defined by

w0
i

=
X

j2J 0
i

w
j

, y0
i

=
1

w0
i

X

j2J 0
i

w
j

y
j

, (17)

where we define J 0
i

= {J
i�1 + 1, . . . ,J

i

} for i =
1, . . . , k + 1 (i.e., J 0

i

denotes the list of indices within
the i th segment, there being k+1 segments for k change
points). Furthermore, all these terms can be computed
in time O(nk) via cumulative sums similar to the cu-
mulative sum used for b above (which take O(T n) to
compute once, but which thereafter only require O(kn)
to form the reduced problem).

To see this equivalence, note first that since X only
changes at the points |J |, it immediately holds that
kXD ⇤k1,2 = kX 0D 0⇤J ,J k1,2. To show that the other

term in the objective is also equivalent, we have that

k(X � Y )W 1/2k2
F

=
k+1X

i=1

k(x 0
i

1T � YJ 0
i
)W 1/2

J 0
i ,J 0

i
k2
F

=
k+1X

i=1

⇣
(wT

J 01)x 0T
i

x 0
i

� 2x 0T YJ 0
i
wJ 0

i
+ kYJ 0

i
W 1/2

J 0
i ,J 0

i
k2
F

⌘

=
k+1X

i=1

w0
i

kx 0
i

� y0
i

k2
2 + c.

This equivalence motivates a primal active set method
where we iteratively guess the active set J (with some
fixed limit on its allowable size), use the projected New-
ton algorithm to solve the reduced problem, and then
use the updated solution to re-estimate the active set.
This is essentially equivalent to a common “block pivot-
ing” strategy for non-negative least squares (Portugal
et al., 1994) or "1 methods (Lee et al., 2007), and has
been shown to be very e�cient in practice (Kim and
Park, 2010). The full algorithm, which we refer to as
Active Set Projected Newton (ASPN, pronounced “as-
pen”), is shown in Algorithm 2. In total, the algorithm
is extremely competitive compared to past approaches
to GFL, as we show in Section 4, often outperforming
the existing state of the art by orders of magnitude.

3 Applications

Although the ASPN algorithm for the group fused
lasso is a useful algorithm in its own right, part of
the appeal of a fast solver for this type of problem
is the possibility of using it as a “subroutine” within
solvers for more complex problems. In this section we
derive such algorithms for two instances: segmentation
of time-varying linear regression models and multi-
channel total variance image denoising. Both models
have been considered in the literature previously, and
the method presented here o↵ers a way of solving these
optimization problems to a relatively high degree of
accuracy using simple methods.

3.1 Linear model segmentation

In this setting, we observe a sequence of input/output
pairs (a

t

2 Rn, y
t

2 R) over time and the goal is
to find model parameters x

t

such that y
t

⇡ aT

t

x
t

(it
is more common to denote the input itself as x

t

and
model parameters %

t

, but the notation here is more in
keeping with the rest of this paper). Naturally, if x

t

is allowed to vary arbitrarily, we can always find (an
infinite number of) x

t

’s that fit the output perfectly,
but if we constrain the sum of norms kx

t

�x
t�1k2, then

we will instead look for piecewise constant segments in
the parameter space; this model was apparently first
proposed in Ohlsson et al. (2010).



Algorithm 2 Active Set Projected Newton (ASPN)

input signal Y 2 Rn⇥T ; weights w 2 RT

+ ; regular-

ization parameters ! 2 RT�1
+ ; maximum active set

size kmax ; tolerance $
output: optimized signal X 2 Rn⇥T

initialization: z 0
repeat

1. Form dual variables and gradient

U  Y D(DW �1D + Z )�1

r
z

f (z) �1

2
(U2)T 1 +

1

2
! 2

2. Compute active set, containing all non-zero z
i

’s
and additional element with negative gradients,
up to size kmax

J 0  {i : z
i

> 0}
J 1  {i : z

i

= 0,r
z

f (z) < 0}
J  J 0 [ J 1

1:k
max

�|J 0|

3. Form reduced problem (Y 0, w0) for J using (17)
and solve using projected Newton

zJ  Projected-Newton(Y 0, w0, ! J )

until k(r
z

f (z))J k2  $

This model may be cast as the optimization problem

minimize
X

kA vecX � yk2
2 + kXD ⇤k1,2, (18)

where X 2 Rn⇥T is the same optimization variable
as previously, y 2 RT denotes the vector of outputs,
vec denotes the vectorization of a matrix (stacking its
columns into a single column vector), and A 2 RT⇥Tn

is the block diagonal matrix

A =

2

6664

aT

1 0 0 · · ·
0 aT

2 0 · · ·
0 0 aT

3 · · ·
...

...
...

. . .

3

7775
. (19)

While this problem looks very similar to the ordinary
GFL setting, the introduction of the additional ma-
trix A renders it substantially more complex. While
it is possible to adapt the Newton methods above to
solve the problem directly, much of the special problem
structure is lost, and it requires, for examples, forming
T n ⇥ T n block tridiagonal matrices, which is substan-
tially more computationally intensive, especially for
large n (the methods scale like O(n3)). While opti-
mization may still be possible with such approaches,
we instead adopt a di↵erent approach that builds on the

alternating direction method of multipliers (ADMM),
an algorithm that has attracted great attention re-
cently (e.g. Boyd et al. (2011)). Briefly, ADMM solves
problems of the form

minimize
x,z

f (x) + g(z), subject toAx + Bz = c, (20)

via a sequence of alternating minimizations over x and
z and dual variable updates.

The “standard” ADMM algorithm. The sim-
plest way to apply ADMM to (18), considered for the
pure group fused lasso e.g., in Wahlberg et al. (2012),
is to introduce variables Z = XD , and formulate the
problem as

minimize
X,Z

kA vecX � Yk2
2 + kZ⇤k1,2

subject to XD = Z.
(21)

After some derivations, this leads to the updates

X k+1  argmin
X

kA vecX � yk2
2 +

⇢

2kXD � Z k + Ukk2
F

Z k+1  argmin
Z

kZ⇤k1,2 +
⇢

2kX
k+1 D � Z + Ukk2

F

Uk+1  Uk + X k+1 D � Z k+1 ,
(22)

where ' acts e↵ectively like a stepsize for the problem.
This set of updates is particularly appealing because
minimization over X and Z can both be computed in
closed form: the minimization over X is unconstrained
quadratic optimization, and has the solution
�
AT A + 'F T F

��1 �
AT y + 'F T vec(Z k � Uk)

�
(23)

where F = (DT ⌦ I ). Furthermore, these updates
can be computed very e�ciently, since

�
AT A + 'F T F

�

is block tridiagonal, and since this matrix does not
change at each iteration, we can precompute its (sparse)
Cholesky decomposition once, and use it for all itera-
tions; using these optimizations, the X update takes
time O(T n2). Similarly, the Z update is a proximal
operator that can be solved by soft thresholding the
columns of X k+1 D + Uk (an O(T n) operation). Al-
though these elements make the algorithm appealing,
they hide a subtle issue: the matrix (AT A + 'F T F X )
is poorly conditioned (owing to the poor conditioning
of DT D ), even for large ' . Because of this, ADMM
needs a large number of iterations for converging to
a reasonable solution; even if each iteration is quite
e�cient, the overall algorithm can still be impractical.

ADMM using the GFL proximal operator. Al-
ternatively, we can derive a di↵erent ADMM algorithm
by considering instead the formulation

minimize
X,Z

kA vecX � Yk2
2 + kZD ⇤k1,2

subject to X = Z,
(24)



which leads to the iterative updates

X k+1  argmin
X

kA vecX � yk2
2 +

⇢

2kX � Z k + Ukk2
F

Z k+1  argmin
Z

kZD ⇤k1,2 +
⇢

2kX
k+1 � Z + Ukk2

F

Uk+1  Uk + X k+1 � Z k+1 .
(25)

The X update can still be computed in closed form

vecX k+1 =
�
AT A + 'I

��1 �
AT y + ' vec(Z k � Uk)

�
,

which is even simpler to compute than in the previous
case, since AT A+'I is block diagonal with blocks a

i

aT

i

+
'I , which can be solved for in O(n) time; thus the entire
X update takes times O(T n). The downside is that
the Z update, of course, can no longer be solved with
soft-thresholding. But the Z update here is precisely
in the form of the group fused lasso; thus, we can use
ASPN directly to perform the Z update. The main
advantage here is that the matrix AT A + 'I is much
better conditioned, which translates into many fewer
iterations of ADMM. Indeed, as we show below, this
approach can be many orders of magnitude faster than
straight ADMM, which is already a very competitive
algorithm for solving these problems.

3.2 Color total variation denoising

Next, we consider color total variation denoising exam-
ple. Given an m⇥n RGB image represented as a third
order tensor, Y 2 R3⇥m⇥n, total variation image de-
noising (Rudin et al., 1992; Blomgren and Chan, 1998)
attempts to find an approximation X 2 R3⇥m⇥n such
that di↵erences between pixels in X favor being zero.
It does this by solving the optimization problem

minimize
X

1
2kX � Yk2

F

+ !
mX

i=1

n�1X

j=1

kX :,i,j � X :,i,j+1 k2

+ !
m�1X

i=1

nX

j=1

kX :,i,j � X :,i+1 ,j

k2,

(26)

corresponding to an "2 norm penalty on the di↵erence
between all adjacent pixels, where each pixel X :,i,j is
represented as a 3 dimensional vector. We can write
this as a sum of m + n group fused lasso problems

minimize
X

mX

i=1

�
kX :,i,: � Y:,i,:k2

F

+ ! kX :,i,:Dk1,2
�

+
nX

j=1

�
kX :,:,j � Y:,:,jk2

F

+ ! kX :,:,jDk1,2
�

,

where X :,i,: 2 R3⇥n denotes the slice of a single row
of the image and X :,:,j 2 R3⇥n denotes the slice of a
single column.

Unfortunately, this optimization problem cannot be
solved directly via the group fused lasso, as the di↵er-
ence penalties on the rows and columns for the same
matrix X render the problem quite di↵erent from the
basic GFL. We can, however, adopt an approach sim-
ilar to the one above, and create separate variables
corresponding to the row and column slices, plus a
constraint that they be equal; formally, we solve

minimize
X,Z

mX

i=1

�
kX :,i,: � Y:,i,:k2

F

+ ! kX :,i,:Dk1,2
�

+
nX

j=1

�
kZ:,:,j � Y:,:,jk2

F

+ ! kZ:,:,jDk1,2
�

subject to X = Z.
(27)

The major advantage of this approach is that it decom-
poses the problem into m + n independentGFL tasks,
plus a meta-algorithm that adjusts each sub-problem
to make the rows and columns agree. Several such
algorithms are possible, including ADMM; we present
here a slightly simpler scheme known as the “proxi-
mal Dykstra” method (Combettes and Pesquet, 2011),
which has been previously applied to the case of (single
channel, i.e., black and white) total variation denois-
ing (Barbero and Sra, 2011). Starting with X 0 = Y ,
P0 = 0, Q0 = 0, the algorithm iterates as follows:

Z k+1
:,:,j  GFL(X k

:,:,j + Pk

:,:,j , ! ), j = 1, . . . , n

Pk+1  Pk + X k � Z k+1

X k+1
:,i,:  GFL(Z k+1

:,i,: + Qk

:,i,: , ! ), i = 1, . . . , m

Qk+1  Qk + Z k+1 � X k+1 .

(28)

Typically, very few iterations (on the order of 10) of
this outer loop are need to converge to high accuracy.
Furthermore, because each of the m or n GFL problems
solved in the first and third steps are independent, they
can be trivially parallelized.

4 Experimental results

We present experimental results for our approaches,
both on the basic group fused lasso problem, where we
compare to several other potential approaches, and on
the two applications of linear model segmentation and
color total variation denoising. C++ and MATLAB
code implementing our methods is available at http:
//www.cs.cmu.edu/

~

mwytock/gfl/.

4.1 Group fused lasso

Here we evaluate the ASPN algorithm versus several
alternatives to solving the group fused lasso problem,
evaluated on both synthetic and real data. Figure 1

http://www.cs.cmu.edu/~mwytock/gfl/
http://www.cs.cmu.edu/~mwytock/gfl/
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Figure 1: Above: synthetic change point data, with
T = 10000, n = 100, and 10 true change points. Below:
recovered signal.

shows a synthetic time series with T = 10, 000, n = 100,
and 10 discrete change points in the data; the data was
generated by uniformly sampling the change points,
sampling the mean of each segment from N (0, I ), and
then additional Gaussian noise. Figure 1 shows the re-
covered signal using the group fused lasso with w

t

= 1,
!
t

= 20. In Figure 2, we show timing results for this
problem as well as a smaller problem with T = 1000
and n = 10; we compare ASPN to GFLseg (Bleak-
ley and Vert, 2011) (which uses coordinate descent
on the primal problem), an accelerated projected gra-
dient on the dual (i.e., the FISTA algorithm) (Beck
and Teboulle, 2009), Douglas-Rachford splitting (Com-
bettes and Pesquet, 2007) (a generalization of ADMM
that performs slightly better here), a projected gradient
on the dual (Aláız et al., 2013), and LBFGS-B (Byrd
et al., 1995) applied to the dual of the dual. In all
cases, ASPN performs as well as (often much better
than) the alternatives.

Next, we evaluate how the ASPN algorithm scales as a
function of the number of time points T and the number
of change points at the solution, k. In Figure 3, the
first set of experiments shows that when the number
of change points at the solution is fixed (k = 10), the
amount of time required for a highly accurate solution
remains small even for large T , agreeing with analysis
that shows the number of operations required is O(T).
In particular, a solution accurate to 10�6 is found in
4.8 seconds on a problem with T = 106 time points.
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Figure 2: Above: timing results on synthetic problem
with T = 1000, n = 10. Below: timing results on
synthetic problem with T = 10000, n = 100.
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Figure 4: Above: Lung data from (Bleakley and Vert,
2011). Below: recovered signal using group fused lasso.

However, in the next set of experiments, we see that
compute time grows rapidly as a function of k due to
the O(k3) operations required to compute the Newton
step, suggesting that the proposed method is most
appropriate for problems with sparse solutions.
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Figure 3: Left: timing results vs. number of change points at solution for synthetic problem with T = 10000 and
n = 10. Right: timing results for varying T , n = 10, and sparse solution with 10 change points.
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Figure 5: Above: Timing results on bladder problem,
T = 2143, n = 57. Below: Timing results on lung
problem, T = 31708, n = 18.

Finally, we evaluate the algorithm on two real time
series previously used with the group fused lasso (Bleak-
ley and Vert, 2011), from DNA profiles of bladder and
lung cancer sequences. Figure 4 shows one of these
two series, along with the approximation produced by
the group fused lasso. Figure 5 shows timing results
for the above methods again on this problem: here we
observe the same overall behavior, that ASPN typically
dominates the other approaches.

4.2 Linear regression segmentation

Here we apply the two di↵erent ADMM methods dis-
cussed in Section 3.1 to the task of segmenting auto-
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Figure 6: Above: Observed autoregressive signal z
t

.
Below: true autoregressive model parameters.

regressive time series models. In particular, we observe
some time series z1, . . . , z

T

, and we fit a linear model to
this data z

t

⇡ aT

t

x
t

where a
t

= (z
t�1, z

t�2, . . . , z
t�n

).
Figure 6 shows an example time series generated by
this process, as well as the true underlying model that
generated the data (with additional noise). This is
the rough setting used in (Ohlsson et al., 2010), which
was the first example we are aware of that uses such
regularization techniques within an linear regression
framework. Figure 7 shows the model parameters re-
covered using the method from Section 3.1, which here
match the ground truth closely.

Of more importance, though, is the comparison be-
tween the two di↵erent ADMM approaches. Figure 8
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Figure 7: Above: Autoregressive parameters recovered
with “simple” ADMM algorithm. Below: parameters
recovered using alternative ADMM w/ ASPN.
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Figure 8: Convergence of simple ADMM versus alter-
native ADMM w/ ASPN.

shows convergence versus running time and here the
“simple” ADMM approach, which encodes the di↵er-
ence operator in the constraints (and thus has simpler
updates), converges significantly slower than our al-
ternative. Importantly, the X axis in this figure is
measured in time, and we emphasize that even though
the “simple” ADMM updates are individually slightly
faster (they do not involve GFL subproblems), their
overall performance is much poorer. Further, as il-
lustrated in Figure 7, the “simple” ADMM approach
never actually obtains a piecewise constant X except
at the optimum, which is never reached in practice.

Figure 9: Left: original image. Middle: image cor-
rupted with Gaussian noise. Right: imaged recovered
with total variation using proximal Dykstra and ASPN.
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Figure 10: Comparison of proximal Dykstra method
to ADMM for TV denoising of color image.

4.3 Color total variation denoising

Finally, as described in Section 3.2, we apply the prox-
imal Dykstra algorithm, using ASPN as a fast sub-
routine, to color image denoising. Figure 9 shows a
256x256 image generated by combining various solid-
colored shapes, corrupted with per-RGB-component
noise of N (0, 0.1), and then recovered with total vari-
ation denoising. There has been enormous work on
total variation denoising, and while a full comparison
is beyond the scope of this paper, ADMM or meth-
ods such as those used by the FTVd routines in Yang
et al. (2009), for instance, are considered to be some
of the fastest for this problem. In Figure 10, we show
the performance of our approach and ADMM versus
iteration number, and as expected observe better con-
vergence; for single-core systems, ADMM is ultimately
a better solution for this problem, since each iteration
of ADMM takes about 0.767 seconds in our implemen-
tation whereas 512 calls to ASPN take 20.4 seconds.
However, the advantage to the ASPN approach is that
all these calls can be trivially parallelized for a 256X
speedup (the calls are independent and all code is CPU-
bound), whereas parallelizing a generic sparse matrix
solve, as needed for ADMM-based approaches, is much
more challenging and thus per-iteration performance
highlights the potential benefits of the ASPN approach.
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